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ABSTRACT OF THE DISSERTATION 

New Constructions in Pairing-Based Cryptography 

by 
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Doctor of Philosophy in Mathematics 
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Professor Professor Rafail Ostrovsky, Chair 

In the past decade, pairing-based cryptography has emerged as an active area of re

search that gave rise to new algorithms, protocols, and primitives. These new tech

niques allowed researchers to achieve cryptographic schemes which had no known (or 

less efficient) counterparts in groups without bilinear pairings. In this dissertation, we 

introduce several schemes in which pairings play a central role in their construction. 

The results that we present in this dissertation stem from three papers which are re

spectively joint work with Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent 

Waters, with Jens Groth, and with Vipul Goyal, Amit Sahai, and Brent Waters. 

In the dissertation, we present the first sequential aggregate signature, the first mul-

tisignature, and the first verifiably encrypted signature provably secure without random 

oracles. Our constructions derive from a novel application of a signature scheme due 

to Waters. We review the definition of these signature variants and consider applica

tions to secure routing and proxy signatures. We show how these are constructed using 

pairing-based cryptography. 

Another scheme we present is a non-interactive verifiable shuffle. A shuffle is a 

permutation and re-encryption of a set of ciphertexts. Shuffles are used, for instance, 

in mix-nets for anonymous broadcast and voting. One way to make a shuffle verifiable 
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is to give a zero-knowledge proof of correctness. All currently known practical zero-

knowledge proofs for correctness of a shuffle rely on interaction. We give the first 

efficient non-interactive zero-knowledge proof for correctness of a shuffle based on 

pairings. 

Finally, we consider the problem of accountability for PKGs in identity-based en

cryption. A well-known concern in the setting of identity-based encryption is that the 

PKG is all powerful and must be completely trusted. To mitigate this problem, the 

notion of Accountable Authority Identity-Based Encryption (A-IBE) was recently in

troduced by Goyal, who provided constructions to realize the notion of A-IBE only in 

the white-box and weak black-box models. In this dissertation, we present a resolution 

to the main open question left in Goyal's work by providing a construction of a fully 

black-box A-IBE system. We show how such a scheme can be securely realized from 

generic underlying primitives, then give a concrete realization of the scheme in any 

bilinear group where the Decisional Bilinear Diffie-Hellman assumption holds. 

xv 
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CHAPTER 1 

Introduction 

In this dissertation, we investigate the construction of various cryptographic schemes 

by making use of groups with bilinear pairings. 

The roots of pairing-based cryptography lie in the use of bilinear pairings on elliptic 

curves. Research on elliptic curve cryptography began when, in 1985, Koblitz [Kob87] 

and Miller [Mil86b] independently suggested the use of elliptic curves for cryptogra

phy (elliptic curves have also found important uses in cryptanalysis, e.g. Lenstra's 

elliptic curve factorization [Len87]). While the initial outlook was promising, in 1991 

Menezes, Okamoto, and Vanstone [MV091] cast some doubt on the subject by show

ing that due to the structure of certain supersingular curves, the underlying assumption 

— the elliptic curve discrete log problem (ECDLP) — was less secure. Their method 

was a novel use of the Weil pairing (introduced by Weil [Wei40] in his proof of the 

Riemann hypothesis for function fields) which reduced the hardness of ECDLP to the 

hardness of the discrete logarithm problem in a finite field. This was one of the first 

results that required the efficient computation of a bilinear pairing. The actual compu

tation of the Weil pairing relies on Miller's algorithm [Mil86a], discovered a few years 

earlier, in 1986. In 1994, Frey and Ruck [FR94] produced a similar attack by using the 

Tate pairing on elliptic curves. 

The turn of the century brought several cryptographic results using bilinear pair

ings, including the works of Mitsunari-Sakai-Kasahara [MSK02], 

Sakai-Oghishi-Kasahara [SOK00], Joux [Jou04], and Boneh-Franklin [BF01, BF03]. 

1 
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Boneh and Franklin's result was one of the two first efficient solutions to the problem 

of creating an identity-based encryption scheme, first posed by Shamir in 1984 [Sha85] 

(the other solution, by Cocks [CocOl], worked in groups that relied on the hardness 

of the Quadratic Residuosity assumption). Bilinear pairings have since proven to be 

very useful in the construction of cryptographic schemes. Indeed, in the past decade, 

there have been many new results in pairing-based cryptography (see, for a partial list, 

Barreto's website [Bar06]). 

Research in optimizing the computation and construction of these bilinear pairings 

has also emerged. These improvements are important for the efficient implementa

tion of pairing-based schemes. Clever optimizations of the Tate pairing has lead to 

the introduction of new pairings such as the eta pairing [BGh07] and the ate pair

ing [HSV06], whose computation are still based upon Miller's algorithm. In addition, 

several works have proposed classes of elliptic curves which are "pairing-friendly", 

namely those that satisfy certain structural properties (see, e.g., the taxonomy of Free

man, Scott, and Teske [FST06]). For this dissertation, we circumnavigate the details of 

these constructions and work instead with abstract groups which admit bilinear pair

ings (we define these in Chapter 2). 

This dissertation presents three results in pairing-based cryptography. The ex

tended abstracts of these results appear in [LOS06, GL07a, GLS08]. We organize the 

chapters as follows. First, in Chapter 2, we review preliminary information, give the 

necessary background, and introduce the notation to be used throughout the disserta

tion. In Chapter 31 we present a pairing-based sequential aggregate signature scheme, 

a multisignature scheme, and a verifiably encrypted signature scheme, which are prov-

ably secure without random oracles. Then, in Chapter 42, we present a non-interactive 
1 Partially contains work by Lu, Ostrovsky, Sahai, Shacham, Waters [LOS06] 
2 Partially contains work by Groth, Lu [GL07a] 

2 
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shuffle with pairing-based verifiability. Finally, Chapter 53 introduces the notion of 

a black-box accountable authority identity-based encryption scheme and presents the 

construction of such a scheme. 

We now give a brief introduction to the results contained in this dissertation. 

1.1 Sequential Aggregate Signatures and Variants 

Chapter 3 partially contains a version of the work by Lu, Ostrovsky, Sahai, Shacham, 

Waters [LOS06], the extended abstract of which appeared in the proceedings of EU-

ROCRYPT 2006. We present an aggregate signature scheme, a multisignature scheme, 

and a verifiably encrypted signature scheme. Unlike previous such schemes, our con

structions are provably secure without random oracles. Random-oracle-free schemes 

have become more attractive since a series of papers beginning with the uninstantia-

bility result of Canetti, Goldreich, and Halevi [CGH98] has cast some doubt on the 

soundness of the random oracle methodology. Moreover, our proposed schemes are 

quite practical, and in some cases outperform the most efficient random-oracle-based 

schemes. 

1.1.1 Related Work 

An aggregate signature scheme allows a collection of signatures to be able to be com

pressed into one short signature. Aggregate signatures are useful for applications such 

as secure route attestation and certificate chains where the space requirements for a 

sequence of signatures can impact practical application performance. 

Boneh et al. [BGL03] presented the first aggregate signature scheme, which was 

based on the BLS signature [BLS04] in bilinear groups. Lysyanskaya et al. [LMR04] 

3Partially contains work by Goyal, Lu, Sahai, Waters[GLS08] 

3 
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presented a sequential RSA-based scheme that, while more limited, could be instan

tiated using more general assumptions. In a sequential aggregate signature scheme, 

the aggregate signature must be constructed sequentially, with each signer modifying 

the aggregate signature in turn. However, in most known applications, the signatures 

are sequentially constructed anyway. One drawback of both schemes is that they are 

provably secure only in the random oracle model and thus there is only a heuristic 

argument for their security. 

In a multisignature scheme, a single short object—the multisignature—can take 

the place of n signatures by n signers, all on the same message. (Aggregate signatures 

can be thought of as a multisignature without this restriction.) Boldyreva [Bol03] gave 

the first multisignature scheme in which multisignature generation does not require 

signer interaction, based on BLS signatures. 

A verifiably encrypted signature is an object that anyone can confirm contains the 

encryption of a signature on some message, but from which only the party under whose 

key it was encrypted can recover the signature. Such a primitive is useful in contract 

signing. Boneh et al. [BGL03] gave the first verifiably encrypted signature scheme 

based on BLS signatures. 

1.1.2 Our Contribution 

All of our constructions derive from adaptations of the signature scheme of 

Waters [Wat05], W, which follows from his identity-based encryption scheme. 

We present the first aggregate signature scheme, WSA, that is provably secure 

without random oracles. Our signatures are sequentially constructed, but unlike the 

scheme of Lysyanskaya et al. a verifier need not know the order in which the aggregate 

signature was created. Our signatures are also shorter than those of Lysyanskaya et al. 

and can be verified more efficiently than those of Boneh et al. We prove the security 

4 
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of our scheme without random oracles under the registered key model and summarize 

this as the following theorem (details are found in Chapter 3, Section 3.2): 

Theorem 1.1.1. The sequential aggregate signature scheme WSA is (t, qc, qs, n, e)-

unforgeable if the underlying Waters signature scheme W is (f, q1, e')-unforgeable 

on G, where 

t'= t + 0(qc+ nqs+n) and q' = qs and e' = e . 

In addition, in Chapter 3, Section 3.3, we present the first multisignature scheme, 

WM, that is provably secure without random oracles. We state this as the following 

theorem, which we prove in the chapter: 

Theorem 1.1.2. The WM. multisignature scheme is (t, q, e)-unforgeable if the W sig

nature scheme is (£', q', e')-unforgeable, where 

t' — t + 0(q) and q' = q and e' = e . 

Finally, in Chapter 3, Section 3.4, we present two verifiably encrypted signature 

schemes that are provably secure without random oracles. The first, QVES, is a generic 

construction from any existentially unforgeable signature scheme, CCA2-secure en

cryption scheme, and unbounded adaptive NIZK. We also give a concrete construc

tion, WVSS, based on the Waters signature scheme. The security of these schemes 

requires not only that the signatures are unforgeable, but also that they must be opaque 

(these concepts are discussed in the chapter). We prove the following theorems in the 

chapter: 

Theorem 1.1.3. The QVES verifiably encrypted signature scheme is unforgeable if 

the underlying signature scheme is unforgeable and the underlying NIZK scheme is 

adoptively unbounded. 

5 
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Theorem 1.1.4. The QVSS verifiably encrypted signature scheme is opaque if the un

derlying signature scheme is unforgeable, the underlying encryption scheme is CCA2-

secure, and the underlying NIZK scheme is adoptively unbounded. 

Theorem 1.1.5. The WVSS verifiably encrypted signature scheme is (t,qs,qA,e)-

unforgeable if the W signature scheme is (t', q', e')-unforgeable, where 

t' = t + 0(qs + qA) and q' — qs and e' — e . 

Theorem 1.1.6. The WVSS scheme is (t, qs, qA,t)-opaque if aggregate extraction is 

(f, e')-hard on G, where 

t' — t + 0(qs + qA) and q' — qs and e = 4kqAe . 

1.2 Non-Interactive Shuffle with Pairing-Based Verifiability 

Chapter 4 partially contains a version of the work by Groth, Lu[GL07a], the extended 

abstract of which appeared in the proceedings of ASIACRYPT 2007. 

In Chapter 4, we present an efficient non-interactive verifiable shuffle by using bi

linear pairings. A shuffle is a permutation and re-encryption of a set of ciphertexts. 

Shuffles are used for instance in mix-nets [Cha81], which in turn are used in protocols 

for anonymous broadcast and electronic voting. In a typical construction of a mix-net, 

the users encrypt messages that they want to publish anonymously. They send the en

crypted messages to a set of mix-net servers that will anonymize the messages. The 

first server permutes and re-encrypts the incoming set of messages, i.e. it carries out a 

shuffle. The next server takes the output from the first server and shuffles these cipher-

texts. The protocol continues like this until all servers have permuted and re-encrypted 

the ciphertexts. After the mixing is complete, the mix-servers may now perform a 

threshold decryption operation to get out the permuted set of messages. The idea is 

6 
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that if just one mix-server is honest, the messages will be randomly permuted and 

because of the re-encryption step nobody will know the permutation. The messages 

therefore appear in random order and cannot be traced back to the senders. 

The mix-net protocol we just described is not secure if one of the mix-servers is dis

honest. A dishonest mix-server could for instance discard some of the ciphertexts and 

inject new ciphertexts of its own choosing. It is therefore desirable to make the shuffle 

verifiable. An obvious way to make the mix-net verifiable is to ask each mix-server 

to provide a zero-knowledge proof of its shuffle being correct. The zero-knowledge 

proof guarantees that the shuffle is correct, yet reveals nothing about the permutation 

or the re-encryption and therefore preserves the privacy of the mix-net. 

1.2.1 Related Work 

Much research has already been done on making shuffles verifiable by providing in

teractive proofs of correctness [SK95, Abe99, AH01, NefOl, FS01, Gro03, NSK04, 

NSK05, Fur05, Wik05, GL07b]. The proofs in these papers are all interactive and rely 

on the verifier choosing random challenges. Using the Fiat-Shamir heuristic, where the 

verifier's challenges are computed through the use of a cryptographic hash-function, 

it is possible to make these proofs non-interactive. As a heuristic argument for the 

security of these non-interactive proofs, one can prove them secure in the random 

oracle model [BR93], where the cryptographic hash-function is viewed as a random 

oracle that outputs a random string. However, Goldwasser and Kalai [GK03] demon

strate that the Fiat-Shamir heuristic sometimes yields insecure non-interactive proofs. 

Other works casting doubt on the Fiat-Shamir heuristic are [CGH98, Nie02, BBP04, 

CGH04]. 

It was an open problem to construct efficient non-interactive zero-knowledge 

(NIZK) proofs or arguments for the correctness of a shuffle that do not rely on the ran-

7 
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dom oracle model in the security proof. Such NIZK arguments can be used to reduce 

the round-complexity of protocols relying on verifiable shuffles. Moreover, interac

tive zero-knowledge proofs are usually deniable [Pas03]; a transcript of an interactive 

proof can only convince somebody who knows that the challenges were chosen cor

rectly. NIZK arguments on the other hand are transferable. They consist of a single 

message that can be distributed and convince anybody that the shuffle is correct. 

Obviously, one can apply general NIZK proof techniques to demonstrate the cor

rectness of a shuffle. However, reducing the shuffle proof to a general NP statement 

and applying a general NIZK to it is very inefficient. Using NIZK techniques devel

oped by Groth, Ostrovsky and Sahai [GOS06b, GOS06a, Gro06, GS08] one can get 

better performance. Some existing interactive zero-knowledge arguments for correct

ness of a shuffle naturally fit this framework. For example, it is possible to achieve 

non-interactive shuffle proofs of size 0(n logn) group elements for a shuffle of n ci-

phertexts by using Abe and Hoshino's scheme [AH01]. This kind of efficiency still 

falls short of what can be achieved using interactive techniques and the interactive 

proofs or arguments that grow linearly in the size of the shuffle do not seem easy to 

make non-interactive using the techniques of Groth, Ostrovsky and Sahai. 

1.2.2 Our Contribution 

In Chapter 4, we offer the first (efficient) non-interactive zero-knowledge argument 

for correctness of a shuffle. The NIZK argument is in the common reference string 

model and has perfect zero-knowledge. The security proof of our scheme does not 

rely on the random oracle model. Instead we make use of recently developed tech

niques for making non-interactive witness-indistinguishable proofs for bilinear groups 

by Groth and Sahai [GS08], which draws on earlier work by Groth, Ostrovsky and 

Sahai [GOS06b, GOS06a, Gro06]. 

8 
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The NIZK argument we suggest is for the correctness of a shuffle of BBS cipher-

texts. This cryptosystem, suggested by Boneh, Boyen and Shacham [BBS04], has 

ciphertexts that consist of 3 group elements for each group element that they encrypt. 

We consider statements consisting of n input ciphertexts and n output ciphertexts and 

the claim that the output ciphertexts are a shuffle of the input ciphertexts. Our NIZK 

arguments, QC-SKUT, consist of 15ra group elements, which is reasonable in com

parison with the statement size, which is 6n group elements. In Chapter 4, we prove 

the following theorem: 

Theorem 1.2.1. The protocol QL-SVIAT is a non-interactive perfectly complete, 

computationally Resound, perfect zero-knowledge argument of a correct shuffle of 

BBS ciphertexts under the Decisional Linear Assumption, Permutation Pairing As

sumption, and Simultaneous Pairing Assumption. 

1.3 Accountable Authority Identity-Based Encryption 

Chapter 5 partially contains a version of the work by Goyal, Lu, Sahai, and 

Waters[GLS08]. The extended abstract of this work appeared in the proceedings of 

the ACM Conference on Computer and Communications Security 2008. 

In Chapter 5, we define and give two constructions of an accountable authority 

identity-based encryption scheme. Shamir [Sha85] introduced the concept of identity-

based encryption (IBE) as an approach to simplify public key and certificate manage

ment in a public key infrastructure (PKI). One of the first practical and fully functional 

IBE schemes was proposed by Boneh and Franklin [BF01, BF03] in the random ora

cle model (another efficient solution was independently proposed by Cocks [CocOl]). 

Following that work, a rapid development of identity-based PKI has taken place (see 

[CHK03, BB04a, BB04b, BBG05, Wat05, Gen06] and the references therein). 

9 
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In an IBE system, the public key of a user may be an arbitrary string, such as an 

e-mail address or other identifier. Of course, users are not capable of generating a 

private key for an identity themselves. For this reason, there is a trusted party called 

the private key generator (PKG) who does the system setup. To obtain a private key 

for his identity, a user would go to the PKG and prove his identity. The PKG would 

then generate the appropriate private key and pass it on to the user. 

Such a setting, however, leads to the following problem. Since the PKG is able to 

compute the private key corresponding to any identity, it must be completely trusted. 

The PKG is free to engage in malicious activities without any risk of being confronted 

in a court of law. The malicious activities could include decrypting and reading mes

sages meant for any user, or worse still, generating and distributing private keys for any 

identity. This, in fact, has been cited as a reason for the slow adoption of IBE despite 

its nice properties in terms of usability. It has been argued that due to the inherent key 

escrow problem, the use of IBE is restricted to small and closed groups where a central 

trusted authority is available [AP03, LBD04, Gen03]. 

Accountable Authority Identity-Based Encryption. Goyal [Goy07] introduced the 

notion of Accountable Authority Identity-Based Encryption (A-IBE) as a new ap

proach to mitigate the above problem of trust. The proposal was to have an algorithm 

that, provided with two keys for the same user, could determine if they came from the 

same "family" of keys. This algorithm would be used to implicate a malicious party, 

whether it was the user or the PKG. Informally speaking, the simplified view of the 

approach is as follows: 

1. In the IBE scheme, there will be an exponential (or super-polynomial) number 

of possible decryption keys corresponding to every identity ID. 

2. A user gets the decryption key corresponding to his identity from the PKG using 
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a secure key generation protocol. The protocol allows the user to obtain a single 

decryption key d\o for his identity without letting the PKG know which key he 

obtained. 

3. Now if the PKG generates a decryption key d\D for malicious usage, with all 

but negligible probability, it will be different from the key d\o which the user 

obtained. Hence the key pair (d\o, d\D) is a cryptographic proof of malicious 

behavior by the PKG (since in normal circumstances, only one key per identity 

should be in circulation). 

4. Given one decryption key for an identity, it is intractable (for the user) to find 

any other. This is so that a dishonest user cannot frame the PKG. 

Thus, this approach severely restricts the PKG as far as malicious distribution of 

the private keys is concerned. The knowledge of the key d[D enables an entity E to go 

to the honest user U (with identity ID and having key d\o) and together with him, sue 

the PKG by presenting the pair (d\D, d\o) as a proof of fraud. 

1.3.1 Related Work 

As mentioned above, the idea of an accountable authority IBE was introduced by 

Goyal [Goy07] as a mitigation to the problem of trust in the PKG. Au et al. [AHL08] 

extended this work by introducing a retrieval algorithm which causes the PKG's master 

secret key to be revealed if more than one key per identity is released. The motivation 

is to penalize the PKG without the users having to go to the court. However, this work 

is orthogonal to ours since their security proofs are in the white box model of security 

(as opposed to black-box or even weakly black-box) and require the PKG to release a 

well formed decryption key. To our knowledge, these are the only known mitigation 

approaches without using multiple PKGs. 

11 
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On the multiple PKGs side, Boneh and Franklin [BF01, BF03] proposed an ef

ficient approach to make the PKG distributed in their scheme using techniques from 

threshold cryptography. Lee et al [LBD04] proposed a variant of this approach using 

multiple key privacy agents (KPAs). 

1.3.2 Our Contribution 

The Right Model for A-IBE. Goyal [Goy07] presented two constructions towards 

achieving the notion of A-IBE. However, his security proofs could only provide a very 

limited guarantee: that the PKG cannot maliciously distribute a well-formed decryp

tion key. As noted by Goyal, while this is a starting point, these kind of "white box" 

guarantees are completely insufficient in practice. The PKG could, for example, re

lease an obfuscated program (or simply a decryption box) that successfully decrypts 

the ciphertexts and yet does not contain the decryption key in any canonical form. 

Furthermore, trivial constructions can satisfy the "white box" security guarantee and 

clearly be insecure in practice: For instance, if we take any IBE scheme and force 

the user to also obtain a blind signature from the PKG on a random message (which 

is checked by the decryption algorithm), this would already satisfy the "white box" 

security definition. Obviously this scheme would be completely broken in practice 

since the PKG could release a box that decrypts for an identity but does not contain a 

signature (and therefore is not well-formed). 

Goyal also showed how to extend his constructions to achieve security guaran

tees according to a weak black-box model, in which a malicious PKG has to output 

a decryption box just after running the key generation protocol with the honest user. 

However, this security model is also insufficient. It is conceivable that the PKG (or a 

party colluding with the PKG) could trick the user into decrypting a maliciously pre

pared ciphertext and see the result (in an attempt to learn more information about the 

12 



www.manaraa.com

decryption key which the user selected during the key generation protocol). Indeed, if 

such decryption queries are allowed, the weak black-box scheme of [Goy07] can be 

completely broken with only a small number of queries. 

In what we call the full black-box model, the PKG is given access to decryption 

queries and no assumptions are made regarding how the decryption box works. In 

particular, just by observing the input/output behavior of the given decryption box, 

a judge should be able to decide if the box was created by the actual user or by a 

dishonest PKG. The construction of an A-IBE scheme in the full black-box model 

— the model which we believe provides the "right" real world security guarantees 

— was left as an important open problem in [Goy07]. 

In this work, we resolve the above open question and provide constructions of 

(fully black-box) A-IBE schemes. Our main result is a general construction of an 

A-IBE scheme from black-box use of any IBE scheme, oblivious transfer protocol, 

and "sufficiently expressive"4 key-policy attribute-based encryption scheme. We then 

give a concrete application of our general construction, which results in an efficient 

realization of an A-IBE scheme that is secure under the Decisional Bilinear Diffie-

Hellman (DBDH) assumption. Under the DBDH assumption, we also present a more 

efficient concrete construction of an A-IBE scheme that does not make use of the 

general construction. 

The main technical difficulty is resolving the tension between the information 

leaked as part of the decryption queries and the success of the exoneration proce

dure. That is, on one hand we require that during regular operation, the outcome of the 

decryption of a ciphertext should not leak information about which decryption key the 

user selected. On the other hand, during exoneration, a judge should be able to extract 

enough information about the user key selection from the decryption box in order to 

4We state the exact requirements in Chapter 5, Section 5.3.1. 
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determine that the user could not have generated the box (and therefore the PKG must 

be at fault). 

The tension is resolved by a novel combinatorial construction. The key idea in all 

our constructions is to design a scheme having imperfect completeness. That is, for 

every possible decryption key, there exist a negligible fraction of (valid) ciphertexts 

which cannot be decrypted by this key. On one hand, this property is helpful in tracing: 

a judge (given the decryption box and the decryption key of the user) can probe the 

box exactly on those ciphertexts which the user key should not be able to decrypt. On 

the other hand, this does not seem to create a problem for decryption queries since the 

chance that a malicious PKG will hit such a ciphertext (with a polynomial number of 

queries) is negligible. 

We construct such a scheme using ideas from key-policy attribute-based encryp

tion (KP-ABE) [SW05, GPS06, OSW07]. Very roughly, we label each ciphertext as 

well as a decryption key with a list of dummy attributes. There exists a policy which 

decides whether or not a ciphertext will be decrypted by a particular private key. To 

achieve statistical completeness, for every decryption key, all but a negligible fraction 

of ciphertexts will satisfy this policy. 

We summarize the main results in Chapter 5. Given an IBE scheme ZBE, a fc-out-

of-n oblivious transfer protocol OT, and a sufficiently expressive KP-ABE scheme 

ABE, we will show how to construct an accountable authority IBE scheme AXBE 

only using TBE, OT, ABE as black-boxes. We refer to this generic compilation as the 

AXBE-QEM scheme. In Chapter 5, Section 5.4, we prove the following theorems: 

Theorem 1.3.1. The advantage of an adversary in the IND-ID-CPA game is negligible 

for AXBE-QEM assuming the underlying IBE scheme is IND-ID-CPA secure. 

Theorem 1.3.2. Assuming that the underlying OT is fully simulatable (secure as per 

the ideal/real world security definition [CanOO]), the advantage of any adversary in 
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the DishonestPKG game is negligible for AIBE-QEN. 

Theorem 1.3.3. Assuming that the underlying OT is fully simulatable (secure as per 

the ideal/real world security definition [CanOO]) and the underlying ABE scheme is 

Selective-Set secure, the advantage of any adversary in the Selective-ID 

DishonestUser game is negligible for AJBS-Q£J\f. 

In Chapter 5, Section 5.5, we give a concrete instantiation of the generic scheme 

using the IBE scheme due to Waters [Wat05], the OT protocol due to Lindell [Lin08], 

and the KP-ABE scheme due to Goyal et al. [GPS06]. This gives rise to our AZBS-l 

scheme. The security of this scheme is inherited from the security of the generic A-IBE 

scheme. 
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CHAPTER 2 

Preliminaries and Notation 

In this chapter, we review preliminary concepts and set the notation for the remaining 

chapters. 

2.1 Groups with Efficiently Computable Bilinear Maps 

We briefly review the necessary facts about bilinear maps and groups associated with 

these maps. 

Consider the following setting: 

Large prime: Let p be a prime (with logp polynomially related to the security pa

rameter). Let G and GT be groups of order p. 

Source Group: G is called the source group and is written using additive notation. 

Target Group: GT is called the target group and is written using multiplicative nota

tion. 

Generator: Let P be a generator of G. 

Bilinear Map: Let e: G x G - > GT be a map with the following properties: 

• Bilinear: For all u, v G G and a, b G Z/pZ, e(a •u,b-v) = e{u, v )ah; 

• Non-trivial: e(P, P) is a generator of GT-
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Efficiency: Group operations in G, GT and the bilinear map can be computed effi

ciently and group membership is efficiently decidable. 

We say that G (or the tuple (p, G, G T , e, P)) is a bilinear group if it satisfies these 

requirements. For more detail regarding the construction of these groups, see e.g. 

[Gal05, Pat05]. 

2.2 Asymptotic and Concrete Security 

The security of modern cryptographic schemes is demonstrated via a reductionist ap

proach. A reduction relates the hardness of a complicated scheme to that of a simpler 

underlying assumption. Examples of such assumptions are the existence of crypto

graphic primitives or the hardness of concrete mathematical problems. Traditionally, in 

complexity-based cryptography, these reductions are asymptotic relative to a security 

parameter k. Reductions of this nature usually take the form of "If no (non-uniform) 

PPT algorithm can break some underlying assumption V with non-negligible probabil

ity (in k), then there are no (non-uniform) PPT algorithms that can break our security 

notion S with non-negligible probability". 

Taking another approach, a more accurate measure is desirable in real-world im

plementations, so we can also speak of concrete security. In such a setting, we spell out 

the security reduction in terms of certain metrics (e.g. running time, memory, oracle 

queries). When working in the context of concrete security, we speak in explicit terms 

- if no PPT algorithm that takes at most t steps can break some underlying assump

tion with probability more than e then no PPT algorithm that takes at most t' steps can 

break our security notion S with probability more than e', where t' and e' are written 

in terms oft and e. 

Several results in the dissertation are stated using concrete security. However, due 
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to the fact that some of the schemes are not optimized for concrete security, we will 

also state the security of our schemes using asymptotic security when it is convenient. 

2.3 Computational Assumptions 

In this section, we review a few computational assumptions that will be used in sub

sequent chapters. These assumptions are made in the context of bilinear groups. For 

concrete security, we fix the tuple (p, G, GT, e, P) and let it be globally known (as 

GK). On the other hand, for asymptotic security, the tuple is generated by Setup(lfc), 

which is a (randomized) setup algorithm that takes a security parameter as its input. 

2.3.1 Computational Diffie-Hellman 

Define the advantage of an algorithm A in solving the Computational Diffie-Hellman 

problem as 

AoVf := Pr a, b £- Z/pZ : A(g, aP, bP) = abP 

The probability is over the uniform random choice of a from Z/pZ, and the coin 

tosses of A. In terms of concrete security, we say that an algorithm A (t, e)-breaks 

Computational Diffie-Hellman if A runs in time at most t, and Adv^ is at least e. 

In terms of asymptotic security, the probability is also taken over the coin tosses 

of Setup. We say that a (non-uniform) algorithm A breaks Computational Diffie-

Hellman if its running time t(k) is polynomial and its success probability Adv^h(fc) is 

non-negligible in the security parameter k. 

Definition 2.3.1. We say that the ((£, e) ̂ Computational Diffie-Hellman assumption 

holds if no adversary can ((t, e)-)break the Computational Diffie-Hellman problem. 
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2.3.2 Decisional Linear Assumption 

We recap the Decisional Linear Problem introduced by Boneh, Boyen and Shacham 

[BBS04]. It can be loosely stated as: Given A,B £-G and given sA, tB, zP e G, 

decide if z = s +1 . 

Define the advantage of an algorithm A in solving the Decisional Linear problem 

as 

dlin 
Advu Pr 

Pr 

A,B^G;s,t^Z/pZ : A(A,B,sA,tB,(s + t)P) = 1 

A,B£-G;s,t,z£- Z/pZ : A(A, B, sA,tB, zP) = 1 

The probabilities are taken over the uniform random choice of A and B from G, 

of s, t, z from Z/pZ, and the coin tosses of A. In terms of concrete security, we say 

that an algorithm A (t, e)-breaks the Decisional Linear Assumption if A runs in time 

at most t, and Advjf1 is at least e. 

In terms of asymptotic security, the probability is also taken over the coin tosses 

of Setup. We say that a (non-uniform) algorithm A breaks the Decisional Linear As

sumption if its running time t(k) is polynomial and its success probability AdvJin(fc) 

is non-negligible in the security parameter k. 

Definition 2.3.2. We say that the ((t, e)-)Decisional Linear Assumption holds if no 

adversary can ((£, e)-)break the Decisional Linear problem. 

2.3.3 Decisional Bilinear Diffie-Hellman (DBDH) Assumption 

Define the advantage of an algorithm A in solving the Decisional Bilinear Diffie-

Hellman [BB04a] problem as 

Adv1 dbdh 
A Pr 

Pr 

R a,b,c£- Z/pZ : A(aP,bP,cP,e(P,P)abc) = 1 

R 
a, b,c,z£- Z/pZ : A(aP, bP, cP, e(P, P)z) = 1 
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The probabilities are taken over the uniform random choice of a, b, c, z from Z/pZ, 

and the coin tosses of A. In terms of concrete security, we say that an algorithm A 

(t, e)-breaks Decisional Bilinear Diffie-Hellman if A runs in time at most t, and Adv̂ j*111 

is at least e. 

In terms of asymptotic security, the probability is also taken over the coin tosses 

of Setup. We say that a (non-uniform) algorithm A breaks Decisional Bilinear Diffie-

Hellman if its running time t(k) is polynomial and its success probability Advibdh(fc) 

is non-negligible in the security parameter k. 

Definition 2.3.3. We say that the ((£, e)-)Decisional Bilinear Diffie-Hellman assump

tion holds if no adversary can ((£, e)-)break the Decisional Bilinear Diffie-Hellman 

problem. 
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CHAPTER 3 

Sequential Aggregate Signatures and Variants 

We briefly describe the organization of this chapter (see the introductory discussion in 

Chapter 1, Section 1.1). 

In this chapter, we present an aggregate signature scheme, a multisignature scheme, 

and a verifiably encrypted signature scheme. Unlike previous such schemes, our con

structions are provably secure without random oracles. We begin in Section 3.1 by 

giving background information about signatures and review the Waters [Wat05] sig

nature scheme. In Section 3.2, we define what a secure sequential aggregate signature 

scheme is and present the construction of our WSA scheme. In Section 3.3, we give 

the definition of a secure multisignature scheme and present the construction of our 

WM. scheme. In Section 3.4, we give the definition of a secure verifiably encrypted 

signature scheme and present two constructions: a generic construction QVSS (built 

from any secure signature scheme, NIZK, and encryption scheme), and our efficient 

pairing-based construction WVES. Due to the subtlety of the security proofs, we 

dedicate Section 3.5 to the proof of security for WVES. We compare our proposed 

schemes to prior work in Section 3.6, and conclude in Section 3.7. 

3.1 Background 

In this section, we introduce the background necessary for the remainder of the chap

ter. We give the definition of existentially unforgeable signatures and review the Wa-
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ters [Wat05] signature scheme. Further in the chapter, we will make use of the Compu

tational Diffie-Hellman assumption, which we discussed in Chapter 2, Section 2.3.1. 

We begin with an optimization that may be applied to the schemes presented in this 

chapter. 

Asymmetric Pairings and Short Representations. It is a simple (though tedious) 

matter to rewrite our schemes to employ an asymmetric pairing e: Gi x G2 —*• G T . 

Signatures will then include elements of Gi, while public keys will include elements 

of G2 and GT- This setting allows us to take advantage of curves due to Barreto and 

Naehrig [BN05]. With these curves, elements of Gi have a 160-bit representation at 

the 1024-bit security level.1 In this case, security follows from a different assumption 

known as the Computational co-Diffie-Hellman problem [BLS04]. 

3.1.1 Existentially Unforgeable Signatures 

A signature scheme is a three-tuple of (randomized) algorithms S = (KeyGen, Sign, 

Verify). These algorithms behave as follows. 

KeyGen. This algorithm generates a private key SK for signing and a public key PK 

for verification of signatures. 

Sign(SK, M). This algorithm signs the message M using the user's private key SK 

and outputs the signature er. 

Verify(PK, M, a). This algorithm takes a message M and a purported signature a 

under the public key PK and outputs v a l i d or i n v a l i d . 
xBy "1024-bit security," we mean parameters such that the conjectured complexity of computing 

discrete logarithms is roughly comparable to the complexity of factoring 1024-bit numbers. For a more 
refined analysis see Koblitz and Menezes [KM05]. 
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We say that the scheme is perfectly correct if for all messages M, it satisfies 

Pr [(PK, SK) <- KeyGen; a <- Sign(SK, M) : Verify(PK, M, a) = val id] = 1 . 

The probability is taken over the randomness of the key generation, signing, and veri

fication algorithms. 

We review the standard notion of signature security — existential unforgeability 

under chosen-message attack — due to Goldwasser, Micali, and Rivest [GMR88]. 

We define this as game where an algorithm A attempts to forge a signature for the 

scheme S. The algorithm wins if the challenger outputs 1 in the following game: 

Setup. The challenger obtains (PK, SK) <— KeyGen and runs A on input PK. 

Signing Queries. Algorithm A requests a signature on a message M. The challenger 

obtains a signature a = Sign(SK, M) and provides it to A. 

Output. Algorithm A outputs a message M* and a signature a*. If M* has not been 

queried before and Verify(PK, M*,a*) = v a l i d then the challenger outputs 1, 

otherwise 0. 

Definition 3.1.1. We say that a signature scheme is (t, qs, e) secure if no t-time ad

versary making qs signing queries can win the above game with advantage more than 

e. 

3.1.2 The Waters Signature Scheme 

We describe the Waters signature scheme [Wat05]. In our description the messages 

will be signatures on bitstrings of the form {0,1} for some fixed k. However, in 

practice one could apply a collision-resistant hash function Hk: {0,1}* —• {0, l}k to 

sign messages of arbitrary length. 
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The scheme requires, besides the random generator P G G, k+1 additional random 

generators u', u\,..., uk G G. In the basic scheme, these can be generated at random 

as part of system setup and shared by all users. In some of the variants below, each 

user has generators (u1, u\,..., uk) of her own, which must be included in her public 

key. We will draw attention to this in introducing the individual schemes. 

The Waters signature scheme is a three-tuple of algorithms W = (W-KeyGen, 

W-Sign, W-Verify). These are constructed as follows. 

W-KeyGen. Pick random a £• Z/pZ and set A <- e(P, P)a. The public key PK is 

A e GT- The private key SK is a. 

W-Sign(SK, M). Parse the user's private key SK as a € Z/pZ and the message M 

as a bitstring (m 1 ; . . . , mk) G {0,1} . Pick a random r <— Z/pZ and compute 

k 

S1<-aP + r(ul + J2miui) a n d S2*-rP . (3.1) 
i=l 

The signature is a = (S1, S2) G G2. 

W-Verify(PK, M, a). Parse the user's public key PK as A G GT, the message M as 

a bitstring (mi , . . . , mk) G {0,1} , and the signature a as (Si, S2) G G2. Verify 

that 
k - l 

e (S i ,P ) -e f s 2 , u' + J2miui) =A (3-2) 

holds; if so, output v a l i d ; if not, output i n v a l i d . 

3.2 Sequential Aggregate Signatures 

In a sequential aggregate signature, as in an ordinary aggregate signature, a single 

short object—called the aggregate—takes the place of n signatures by n signers on 
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n messages. Thus aggregate signatures are a generalization of multisignatures. Se

quential aggregates differ from ordinary aggregates in that the aggregation operation 

is performed by each signer in turn, rather than by an unrelated party after the fact. 

Aggregate signatures have many applications, as noted by Boneh et al. [BGL03] 

and Lysyanskaya et al. [LMR04]. Below, we consider two: Secure BGP route attesta

tion and proxy signatures. 

In BGP, routers generate and forward route attestations to other routers to advertise 

the routes which should be used to reach their networks. Secure BGP solves the prob

lem of attestation forgery by having each router add its signature to a valid attestation 

before forwarding it to its neighbors. Because the size of route attestations is limited, 

aggregate signatures are useful in reducing the overhead of multiple signatures along 

a path. Nicol, Smith, and Zhao [NSZ04] gave a detailed analysis of the application 

of aggregate signatures to the Secure BGP routing protocol [KLSOO]. Our sequential 

aggregate signature scheme is well suited for improving SBGP. Since all of the incom

ing route attestations need to be verified anyway, the fact that our signing algorithm 

requires a verification adds no overhead. Additionally, our signature scheme can have 

signatures that are smaller than those of Lysyanskaya et al. and verification will be 

faster than that of the Boneh et al. scheme. 

A proxy signature scheme allows a user, called the designator, to delegate signing 

authority to another user, the proxy signer. This signature primitive, introduced by 

Mambo, Usada, and Okamoto [MU096], has been discussed and used in several prac

tical applications. Boldyreva, Palacio, and Warinschi [BPW03] show how to construct 

a secure proxy signature scheme from any aggregate (or sequential aggregate) sig

nature scheme. Instantiating the Boldyreva-Palacio-Warinschi construction with our 

scheme, we obtain a practical proxy signature secure without random oracles. 
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3.2.1 Definitions 

A sequential aggregate signature scheme includes three algorithms. The first, 

KeyGen, is used to generate public-private keypairs. The second, AggSign, takes 

not only a private key and a message to sign, as does an ordinary signing algorithm, 

but also an aggregate-so-far by a set of I signers on I corresponding messages; it folds 

the new signature into the aggregate, yielding a new aggregate signature by l+l signers 

on I + 1 messages. The third algorithm, AVerify, takes a purported aggregate signa

ture, along with I public keys and I corresponding messages, and decides whether the 

aggregate is valid. 

The Sequential Aggregate Certified-Key Model. Because our aggregate signature 

behaves like a sequential aggregate signature from the signers' viewpoint, but like 

a standard aggregate signature from the verifiers' viewpoint, we describe a security 

model for it that is a hybrid of the sequential aggregate chosen key model of Lysyan-

skaya et al. [LMR04] and the aggregate chosen key model of Boneh et al. [BGL03]. In 

both models, the adversary is given a single challenge key, along with an appropriate 

signing oracle for that key. His goal is to generate a sequential aggregate that frames 

the challenge user. The adversary is allowed to choose all the keys in that forged 

aggregate but the challenge key. 

We prove our scheme in a more restricted model that requires that the adversary 

certify that the public keys it includes in signing oracle queries and in its forgery were 

properly generated. This we handle by having the adversary hand over the private keys 

before using the public keys. We could also extract the keys by rewinding or, if this is 

impossible, using the NIZKs proposed by Groth, Ostrovsky, and Sahai [GOS06b]. 

Formally, the advantage of a forger A in our model is the probability that the chal

lenger outputs 1 in the following game: 
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Setup. Initialize the list of certified public keys C = 0. Then generate (PK, SK) <— 

KeyGen. Run algorithm A with PK as input. 

Certification Queries. Algorithm A provides a keypair (PK', SK') in order to certify 

PK'. Add PK' to C if SK' is its matching private key. 

Signing Queries. Algorithm A requests a sequential aggregate signature, under the 

challenge key PK, on a message M. In addition, it supplies an aggregate-so-far 

a' on messages M under keys PK. Check that the signature a' verifies; that 

each key in P K is in C; that PK does not appear in PK; and that |PK| < n. 

If any of these fails to hold, answer i n v a l i d . Otherwise respond with a = 

AggSign(SK,M, < T ' , M , P K ) . 

Output. Eventually, A halts, outputting a forgery a* on messages M under keys PK. 

This forgery must verify as valid under AVerify; each key in P K (except the 

challenge key) must be in C; and |PK| < n must hold. In addition, the forgery 

must be nontrivial: the challenge key PK* must appear in PK, WLOG at in

dex 1 (since signature verification in our scheme has no inherent order), and the 

corresponding message M[l] must not have been queried by A of its sequential 

aggregate signing oracle. Output 1 if all these conditions hold, 0 otherwise. 

We say that an aggregate signature scheme is (t, qc,qs, n, e) secure if no t-time adver

sary making qc certification queries and qs signing queries can win the above game 

with advantage more than e, where n is an upper bound on the length of the sequential 

aggregates involved. 
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3.2.2 The WSA Sequential Aggregate Signature Scheme 

We start by giving some intuition for our scheme. Each signer in our scheme will have 

a unique public key from the Waters signature scheme 

u',u=(Ul,...,uk),A+-e(P,P)a. 

While in the original signature scheme the private key consists only of a, in our ag

gregate signature scheme it is important that the private key holder will additionally 

choose and remember the discrete logs oiu',u— (ui,..., uk). In the Waters signature 

scheme, signatures are made of two group elements 5*1 and S2. At a high level, we can 

view £2 as some randomness for the signature and Si as the signature on a message 

relative to that randomness. 

An aggregate signature in our scheme also consists of group elements S[, S'2. The 

second element S'2 again consists of some "shared" randomness for the signature. 

When a signer wishes to add his signature on a message to an aggregate (S[, S'2), 

he simply figures out what his Si component would be in the underlying signature 

scheme given S'2 as the randomness. In order to perform this computation the signer 

must know the discrete log values of all of his public generators. He then multiplies 

this value into S[ and finally re-randomizes the signature. 

We now formally describe the sequential aggregate obtained from the Waters sig

nature. 

Our sequential aggregate scheme is a three-tuple of algorithms WSA = (KeyGen, 

AggSign, AVerify). These behave as follows. 

WSA-KeyGen. Pick random a, y' <— Z/pZ and a random vector y = (yi,..., yk) 

£• (Z/pZ)k. Compute 

u'^y'P and u = (uu ... ,uk) <- (VlP,... ,ykP) and A^e{P,P)a. 
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The user's private key is SK = (a, y', y) G (Z/pZ)fc+2. The public key is 

PK = (A, u', u) G GT x Gk+1; it must be certified to ensure knowledge of the 

corresponding private key. 

WSA-AggSign(SK, M, a', M, PK) . The input is a private key SK, to be parsed as 

(a, y', y i , . . . , yk) £ (Z/pZ)k+2; a message M to sign, parsed as (mi , . . . , rrik) 

G {0,1} ; and an aggregate-so-far a' on messages M under public keys PK. 

Verify that a' is valid by calling AVerify(er', M, PK) ; if not, output f a i l and 

halt. Check that the public key corresponding to SK does not already appear 

in PK; if it does, output f a i l and halt. (We revisit the issue of having one 

signer sign multiple messages below.) 

Otherwise, parse a' as (S[,S'2) G G2. Set I <- |PK|. Now, for each i, 1 < 

i < I, parse M[i] as (ra^i,. . . ,mi)/t) G {0, l}k, and parse PK[i] as (Ah u'{, 

Ui,i, • •., «i,fc) G GT x Gk+1. Compute 

k 

W!<- S[+aP+ (y' + Y^ yjmj)S'2 and w2 <- S'2 . (3.3) 

The values (wi,W2) form a valid signature on M| |M under keys PK||PK, but 

this signature needs to be re-randomized: otherwise whoever created a' could 

learn the user's private key aP. Choose a random r G Z/pZ, and compute 

k l k 

S-[ <— Wi+r (v! + 2 J TTljUj) + 2_^ ? {U'i + 1 1 mi,jui,j) ^ S2 <~ W2 + rP . 
j=l i=l j=l 

(3.4) 

It is easy to see that a = (Si, S2) is also a valid sequential aggregate signature 

on M||M under keys PK||PK, with randomness r + f, where w2 = rP; output 

a and halt. 

WSA-AVerify(cr, M, PK) . The input is a purported sequential aggregate a on mes

sages M under public keys PK. Parse a as (Si, S2) G G. If any key appears 
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twice in PK, if any key in P K has not been certified, or if |PK| ^ |M|, output 

i n v a l i d and halt. 

Otherwise, set I <— |PK|. If I = 0 and Si = S2 = 1, then output v a l i d , and 

i n v a l i d otherwise. 

Now, for each i, 1 < i < I, parse M[i] as (mitl,..., mijk) e {0, 1 } \ and parse 

PK[i] as (Ai, u'{, u^,..., uifk) e GT x Gfc+1. Finally, verify that 

1 k _i l 

e(SuP) • e(s2, J ] («J + J^rriiju^y I f ] A (3.5) 

holds; if so, output v a l i d ; if not, output i n v a l i d . 

Signature Form. Consider a sequential aggregate signature on / messages M under 

I public keys PK. For each i let M[i] be (miyi,..., mitk) and let PK[i] be (Ai, u'{, 

Ui,i, • • •, Ui,k) with corresponding private key (au y\, y u , . . . , yiik). A well-formed 

sequential aggregate signature a — (Si,S2) in this case has the form 

1 1 k 

S1 = ̂ 2aiP + r^2(u'i + Yl miJui>i) a n d S2 = rP . 

Additionally, we consider a = (1,1) to be a valid signature on an empty set of signers. 

Notice that (Si, S2) is the product of Waters signatures all sharing the same random

ness r. 

Even though in our description we did not allow a signer to sign twice in an ag

gregate signature, a simple trick allows for this. Suppose a signer wishes to add his 

signature on message M to a sequential aggregate signature that already contains his 

signature on another message M'. He need simply first remove his signature on M' 

from the aggregate, essentially by dividing it out of Si, and multiply in a signature on 

M' : M, which is a message that attests to both M' and M. 
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Performance. Verification in our signatures is fast, taking approximately fc/2 mul

tiplications per signer in the aggregate, and only two pairings regardless of how many 

signers are included. In contrast, the aggregate signatures of Boneh et al. [BGL03] 

take I + 1 pairings to verify when the aggregate includes I signers. 

3.2.3 Proof of Security 

Theorem 3.2.1. The sequential aggregate signature scheme WSA is (t, qc, qs, n, e)-

unforgeable if the underlying Waters signature scheme W is (t',q',e')-unforgeable 

on G, where 

t' — t + 0(qc + nqs + n) and q' = qs and e' = e . 

Proof. Suppose that there exists an adversary A that succeeds with advantage e. We 

build a simulator B to play the forgeability game against the scheme W. In the end, 

our simulator will attempt to output a forged Waters signature (W signature). Given 

the challenge W public key PK* = (A, u', ux,..., uk), simulator B interacts with A 

as follows. 

Setup. Algorithm B runs A supplying it with the challenge key PK*. 

Certification Queries. Algorithm A wishes to certify some public key PK = (A, u', 

«! , . . . , Uk), providing also its corresponding private key SK = (a, y', y 1 ? . . . , 

yk). Algorithm B checks that the private key is indeed the correct one and if so 

registers (PK, SK) in its list of certified keypairs. 

Aggregate Signature Queries. Algorithm A requests a sequential aggregate signa

ture, under the challenge key, on a message M, In addition, it supplies an 

aggregate-so-far a' on messages M under keys PK. The simulator first checks 

that the signature a' verifies; that each key in P K has been certified; that the 
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challenge key does not appear in PK; and that |PK| < n. If any of these 

conditions does not hold, B returns f a i l . 

Otherwise, B queries its own signing oracle for key PK*, obtaining a signa

ture a on message M, which we view as a sequential aggregate on messages 

(M) under keys (PK*). The simulator now constructs the rest of the required 

aggregate by adding to a, for each signer PK[«], the appropriate signature on 

message M[i] using algorithm AggSign. It can do this because it knows—by 

means of the certification procedure — the private key corresponding to each 

public key in PK. The result is an aggregate signature a' on messages M| |M 

under keys PK||PK*. This reconstruction method works because signatures are 

re-randomized after each aggregate signing operation and because our signatures 

have no inherent verification order. 

Output. Eventually, A halts, outputting a forgery, a* = (51*, ££) on messages M un

der keys PK. This forgery must verify as valid under AVerify; each key in P K 

(except the challenge key) must have been certified; and |PK| < n must hold. 

In addition, the forgery must be nontrivial: the challenge key PK* must appear 

in PK, WLOG at index 1 (since signature verification in our scheme has no in

herent order), and the corresponding message M[l] must not have been queried 

by A of its sequential aggregate signing oracle. If the adversary was not suc

cessful we can quit and disregard the attempt. 

Now, for each i, 1 < % < I = |PK| = |M|, parse PK[i] as (A^u'^u^,... ,uifk) 

and M[i] as (miti,... ,miifc) G {0, l}fc. Note that we have PK* = (Ai,u[, 

ui,i,..., «i,fc). Furthermore, for each i, 2 < i < I, let (a*, y[, y^,..., yi>k) be 

the private key corresponding to PK[j], Algorithm B computes 

l k 

Si <-St-J2 (otiP +{y'i + Y, Itejmy) Sj) and S2 <- S*2 . 
i=2 j=l 
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- 1 

We now have 

e(Si,P) • e[S2,u[ + J2j=1
 m^ui,i) 

= e{Sl,P) • e[S^,u[ + J2j=1mijMijJ 

i i k 

i=2 i=2 j= l 

= e(3f,P) • e(s'2*,M
,
1 + ^ ^ m y u y ) 

i=2 i=2 

= e( ,̂p) • ne(s;,«; + E*=im^u«)"1 IIA_1 

i = l i=2 
I I 

»=1 «=2 

The last line follows from the sequential aggregate verification equation. So 

(Si, £2) is a valid signature on M* = M[l] = ( m l i l r .. ,mltk) under key 

PK[1] = PK*. Moreover, since A did not make an aggregate signing query 

at M*, B did not make a signing query at M*, so cr = (Si, S2) is a nontrivial 

W signature forgery. Algorithm B returns a and halts. 

Algorithm B is successful whenever A is. Algorithm B makes as many signing 

queries as A makes sequential aggregate signing queries. Algorithm B's running time 

is that of A, plus the overhead in handling *4's queries, and computing the final result. 

Each certification query can be handled in 0(1) time; each aggregate signing query can 

be handled in 0(n) time; and the final result can also be computed from A's forgery 

in 0(n) time. • 
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3.2.4 A More Efficient Variant in the Random Oracle Model 

Our scheme as described in Section 3.2.2 implicitly uses the hash H(mi,..., rrik) = 

u'+^2i=1 rriiUi. It is also possible to instantiate it with the Boneh-Boyen hash H(M) = 

u' + HQ{M)U, where H0 maps {0,1 }* to Z/pZ and is treated as a random oracle. (This 

derives from Boneh and Boyen's suggested conversion, in the random oracle model, of 

their selective-ID IBE to a fully secure one [BB04a, Theorem 7.2], to which we then 

apply the Naor transform recorded by Boneh and Franklin [BF01, BF03] to obtain a 

signature.) 

o 

In this variant, each user picks x,y,a <— Z/pZ and publishes u = xP, u' = yP, 

and A = e(P,P)a. Public key sizes are thus much smaller than in our Waters-based 

scheme. 

Compared to the scheme of Boneh et al. [BGL03], whose proof of security is also 

in the random oracle model, our variant scheme is sequential, uses a weaker (certified-

key) security model, and has somewhat longer public keys and signatures. On the other 

hand, verification in our variant scheme requires only a constant number of pairings 

rather than I + 1 for an Z-user aggregate as in BGLS. 

3.3 Multisignatures 

In a multisignature scheme, a single multisignature—the same size as one ordinary 

signature — stands for I signatures on a message M. Multisignatures were introduced 

by Itakura and Nakamura [IN83], and have been the subject of much research [Oka88, 

0099, Bol03]. The first multisignatures in which signatures could be combined into a 

multisignature without interaction was proposed by Boldyreva [Bol03], based on BLS 

signatures [BLS04]. Below, we present another non-interactive multisignature scheme, 

based on the Waters signature, which is provably secure without random oracles. 
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Security Model. Micali, Ohta, and Reyzin [MOR01] gave the first formal treatment 

of multisignatures. We prove security in a variant of the Micali-Ohta-Reyzin model 

due to Boldyreva [Bol03]. In this model, the adversary is given a single challenge 

public key PK, and a signing oracle for that key. His goal is to output a forged mul-

tisignature a* on a message M* under keys PKi , . . . , PK;. Of these keys, PKi must 

be the challenge key PK. For the forgery to be nontrivial, the adversary must not have 

queried the signing oracle at M*. The adversary is allowed to choose the remaining 

keys, but must prove knowledge of the private keys corresponding to them. For sim

plicity, Boldyreva handles this by having the adversary hand over the private keys; in a 

more complicated proof of knowledge, the keys could be extracted by rewinding, with 

the same result. 

3.3.1 The WM Multisignature Scheme 

We describe the multisignature obtained from the Waters signature. In this scheme, 

all users share the same random generators u',ui,...,Uk, which are included in the 

system parameters. Our scheme is a five-tuple of algorithms WM. = (KeyGen, Sign, 

Verify, Combine, MVerify), which behave as follows. 

WM-KeyGen, WM-Sign, WM-Verify. These are the same as W-KeyGen, W-Sign, 

and W-Verify, respectively. 

WM-Combine({PKj, <x«}-=1, M). For each user in the multisignature the algorithm 

takes as input a public key PKj and a signature a{. All of these signatures are 

on a single message M. For each i, parse user i's public key PK; as A{ € G T 

and her signature er; as (S\ , S% ) € G2; parse the message M as a bitstring 

(mi , . . . , mfc) e {0,1} . Verify each signature using Verify; if any is invalid, 
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output f a i l and halt. Otherwise, compute 

i i 

S^J2s® and S*^J2s? • <3-6) 

The multisignature is a = (ft, ft); output it and halt. 

WM-MVerify({PKj}'=1, M,a). For each user in the multisignature, the algorithm 

takes a public key PKj. The algorithm also takes a purported multisignature a 

on a message M. Parse user i's public key PIQ as Ai e GT, the message M as 

a bitstring (m x , . . . , m&) G {0,1} , and the multisignature a as (ft, S2) E G2. 

Verify that 
k I 

e(Si,P) • e(ft, u' + Y^ "W)"1 = IIA { i ) (3-7> 
i=l j = l 

holds; if so, output v a l i d ; if not, output i n v a l i d . 

It is clear that if all signatures verify individually, the multisignature formed by 

their product also verifies according to (3.7). Note that we have 

(ft,52) = (5>«)p+(E^)K+E-= i m M(I> W H > 
i—l i=l i = l 

where r ^ is the randomness used by User i to generate her signature. 

3.3.2 Proof of Security 

The WM. scheme is unforgeable if W signatures are unforgeable. We state this as the 

following theorem. 

Theorem 3.3.1. The WM. multisignature scheme is (t, q, e)-unforgeable if the W sig

nature scheme is (£', q', e')-unforgeable, where 

t' = t + 0(q) and q' — q and e' = e . 
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Proof. Suppose A is an adversary that can forge multisignatures, and (t, q, e)-breaks 

the WM scheme. We show how to construct an algorithm B that (t',q, e)-breaks the 

W scheme. Algorithm B is given a W public key A = e(P, P)Q . It interacts with A as 

follows. 

Setup. Simulator B invokes A, providing to it the public key A. 

Signature queries. Algorithm A requests a signature on some message M under the 

challenge key A. Algorithm B requests a signature on M in turn from its own 

signing oracle, and returns the result to the adversary. 

Output. Finally, A halts, having output a signature (SI, S%) on some message M*, 

along with public keys A^,..., A^ for some /, where A^ equals A, the chal

lenge key. It must not previously have requested a signature on M*. In addition, 

it outputs the private keys a^2\..., a® for all keys except the challenge key. 

Algorithm B sets S <- SJ - £ ' = 2 a® P. Then we have 

k k 

e(S,P) • e(S2,u' + ^2miui)~l = e(Si,P) • e(S2,u' + ^ m ^ i ) " 1 

2=1 i = l 

i=2 
Y[e(p,py 
i=2 

Y[A®-f[A-®=A<»=A 
i = l j=2 

so (S, S2) is a valid W signature on M* under the challenge key A. Since A 

did not make a signing query to the challenger at M*, neither did B make a 

signing query to its own signing oracle at M*, and the forgery is thus nontrivial. 

Algorithm B outputs (S, S2) and halts. 

Thus B succeeds whenever A does. Algorithm B makes exactly as many signing 

queries as A does. Its running time is the same as ,4's, plus the time required for setup 
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and output—both 0(1) — and to handle A's signing queries — 0(1) for each of at 

most q queries. • 

3.4 Verifiably Encrypted Signatures 

A verifiably encrypted signature on some message attests to two facts: 

• that the signer has produced an ordinary signature on that message; and 

• that the ordinary signature can be recovered by the third party under whose key 

the signature is encrypted. 

Such a primitive is useful for contract signing, in a protocol called optimistic fair 

exchange [ASWOO, BDM98]. Suppose both Alice and Bob wish to sign some contract. 

Neither is willing to produce a signature without being sure that the other will. But 

Alice can send Bob a verifiably encrypted signature on the contract. Bob can now 

send Alice his signature, knowing that if Alice does not respond with hers he can take 

Alice's verifiably encrypted signature and the transcript of his interaction with Alice 

to the third party — called the adjudicator—who will reveal Alice's signature. 

Boneh et al. [BGL03] introduced verifiably encrypted signatures, gave a security 

model for them, and constructed a scheme satisfying the definitions, based on the BLS 

short signature [BLS04]. 

We describe the verifiably encrypted signature scheme obtained from the Waters 

signature scheme. Unlike the scheme of Boneh et al, ours is secure without random 

oracles. 

Security Model. Boneh et al. specify two properties (besides correctness) that a ver

ifiably encrypted signature scheme must satisfy: unforgeability and opacity. Both 
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are defined in games. In each, the adversary is given a signer's public key PK and 

an adjudicator's public key APK. He is allowed to make verifiably encrypted sign

ing queries of the form EncSign(SK, APK, •) and adjudication queries of the form 

Adj(ASK, PK, •, •). In the unforgeability game, his goal is to output {M*,rf) such that 

he did not query his signing oracle at M*; in the opacity game his goal is to output 

(M*, a*) such that he did not query his adjudication oracle at M*. An adversary can 

thus win the opacity game either by creating a forgery for the underlying signature 

scheme directly or by recovering the ordinary signature from an encrypted signature 

without the adjudicator's help. 

3.4.1 Our Scheme 

Our scheme is a seven-tuple of algorithms WVSS = (KeyGen, Sign, Verify, AdjKg, 

EncSign, EncVerify, Adj) that behave as follows. 

WVES-KeyGen, WVES-Sign, WVES-Verify These are the same as W-KeyGen, 

W-Sign, and W-Verify, respectively. 

WVES-AdjKg. Pick (3 £ Z/pZ, and set v <- /3P. The adjudicator's public key is 

APK = v; the adjudicator's private key is ASK = (3. 

WVES-EncSign(SK, APK, M) Parse the user's private key S K a s a e Z/pZ and 

the adjudicator's public key APK as v G G. To sign the message M = (mi , . . . , 

rrik), compute a signature (Si, S2) <— Sign(SK, M). Pick a random s <— Z/pZ, 

and compute 

K1*-Si+ sv and K2 <- S2 and K3 *- sP . 

The verifiably encrypted signature rj is the tuple (Ki,K2,K3). 

WVES-EncVerify(PK, APK, M, rj). Parse the user's public key PK as A G GT, the 
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adjudicator's public key APK as v € G, and the verifiably encrypted signature r) 

as (Ki, K2, Kz) G G3. Accept if the following equation holds: 

k 

eiK^P) • e(K2,u' + Y,miuiy
1 • eiKs^y1 ^ A , (3.8) 

where M = (mi,...,mk). 

WVES-Adj(ASK, PK, M, 77). Parse the adjudicator's private key ASK as (3 G Z/pZ. 

Parse the user's public key PK as A G GT, and check that it has been certified. 

Parse the message M as (mi,..., mk) € {0,1} . Verify (using EncVerify) that 

the verifiably encrypted signature r\ is valid, and parse it as (Ki, K2,K3) G G3. 

Compute 

Si^Ki- pK3 and S2 <- K2 ; 

re-randomize (Si, S2) by choosing s <— Z/pZ and computing 

S'i^Si+sl(u' + J2'mtui)) and S'2*-S2 + sP; 

and output the signature (S[, S'2). 

It is easy to see that this scheme is valid, since if all parties are honest we have, for 

a verifiably encrypted signature (Ki,K2,K3), 

k 

e(Ki,P) • e(K2,u' + ^miuiy
1 • e^v)-1 

i= i 
k 

= (e(SuP) • e(sv,P)) • e(S2,u' + ^ m ^ ) - 1 • e(sP,v)~1 

i = l 

k 

= e(Si,P) • e(S2,u' + J2miui)~1 = A > 
i = l 
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as required; and if (Ki,K2, K3) is a valid verifiably encrypted signature then 

k 

e(S1,P)-e(S2,u' + ^2mlui)-
1 

k 

= (e(ATi, P) • e(-/?AT3, P)) • e(AT2,«' + ^ m ^ ) _ 1 

fe 

= e ^ P ) • e(K2,u' + ^ m ^ ) " 1 • e ^ , * ) - 1 = A , 
i=l 

so the adjudicated signature is indeed a valid one. 

Proofs of Security. The WVES scheme is unforgeable if W signatures are unforge-

able, and opaque if CDH is hard on G. We give the proofs in Section 3.5. 

3.4.2 VES from General Assumptions 

Recent work has shown that group signatures [BMW03] and ring signatures [BKM06] 

can be built from general assumptions using Non-Interactive Zero Knowledge (NIZK) 

proofs. We note that verifiably encrypted signatures can also be realized from gen

eral assumptions. Roughly, the signer signs a message, encrypts the signature to the 

adjudicator and then attaches a NIZK proof that this was performed correctly. 

Specifically, we show how to construct a VES scheme from secure generic signa

ture schemes, encryption schemes, and adaptive unbounded NIZKs (in the common 

reference string model). Let these be denoted by the following tuples of algorithms 

— (SKg, Sign, Verify), (EKg, Enc, Dec), (Pr, V, Sim), respectively. From these we 

construct a verifiably encrypted signature scheme QVES = (KeyGen, Sign, Verify, 

AdjKg, EncSign, EncVerify, Adj) as follows. 

GVES-KeyGen, GVES-Sign, GVES-Verify, GVES-AdjKg These algorithms are 

the same as SKg, Sign, and Verify, EKg respectively. 
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GVES-EncSign(SK, APK, M) To sign the message M, we compute 

a <— Sign(SK, M). Then compute 7 <— Enc(APK, a) with randomness r, 

and provides a NIZK proof of the statement "There exists a, r such that 7 = 

Enc(APK, a; r) and Verify(PK, M,a) = 1". The verifiably encrypted signa

ture 77 is the tuple (7, TT). 

GVES-EncVerify(PK, APK, M, 77). Parse the verifiably encrypted signature 77 as 

(7, TT). Accept if V(M, PK, APK, 7, TT) = 1. 

GVES-Adj(ASK, PK, M, 77). Verify (using EncVerify) that the verifiably encrypted 

signature 77 is valid, and parse it as (7, TT) Compute a <— Dec(ASK, 7) and 

output the signature a. 

Theorem 3.4.1. The QVSS verifiably encrypted signature scheme is unforgeable if 

the underlying signature scheme is unforgeable and the underlying NIZK scheme is 

adoptively unbounded. 

Proof. We show how to turn a verifiably-encrypted signature forger A into a forger B 

for the underlying signature scheme. 

Algorithm B is given a signature public key PK. It sets up its own encryption 

scheme and computes (APK, ASK) <— AdjKg, and provides the adversary A with 

PK and APK. 

When A requests a verifiably encrypted signature on some message M, the chal

lenger B requests a signature on M from the signature scheme, obtaining a signature a. 

It computes 77 = (Enc(er), -K) from its own encryption and NIZK oracle. Algorithm B 

provides A with it. 

When algorithm A requests adjudication of a verifiably encrypted signature (7, TT) 

on some message M, B verifies the NIZK and runs its decryption oracle on 7 and 

replies with the decrypted value. 
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Finally, A outputs a forged verifiably-encrypted signature rf = (7*, TT*) on some 

message M*. Algorithm A must never have made a verifiably encrypted signing query 

at M*. Furthermore, by the soundness of the NIZK, 7* must be a valid encryption of 

some valid signature, a*. The challenger B outputs a* and halts. 

Algorithm B thus succeeds whenever A does and the soundness of the NIZK is 

preserved. Its running time overhead is (9(1) for each of ,4's verifiably encrypted 

signing and adjudication queries, and for computing the final output. • 

To prove that GVES is opaque, we create a series of hybrid experiments to show 

any adversary that can break GVES can break the security of at least one of the under

lying schemes. 

Theorem 3.4.2. The QV£S verifiably encrypted signature scheme is opaque if the un

derlying signature scheme is unforgeable, the underlying encryption scheme is CCA2-

secure, and the underlying NIZK scheme is adaptively unbounded. 

Proof. We consider the following hybrid experiments: 

Experiment 0: This will be the actual opacity experiment. Our goal is to show the 

adversary succeeds with negligible probability in this experiment. 

Experiment 1: Experiment 1 succeeds if Experiment 0 succeeds and the adversary 

did not generate a proof of any false statement. 

Experiment 2: Experiment 2 succeeds if Experiment 1 succeeds and the adversary 

queried for the verifiably encrypted signature of its output message M*. 

Experiment 3: In this experiment, we modify Experiment 2 by replacing all proofs 

provided to the adversary by simulated proofs. 
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Experiment 4: We change Experiment 3 as follows. For each verifiably encrypted 

signature query, with probability A we provide the adversary with (Enc(_L, r), 

Sim(_L,r)) as the verifiably encrypted signature. This experiment succeeds if 

the previous conditions hold and event S occurs, where E is the event that the 

adversary received real signatures on everything except M* and a fake signature 

onM*. 

Let A be an adversary that succeeds in the opacity game for verifiably encrypted 

signatures. We define the advantage Adv^xp i as the probability it succeeds in experi

ment i. Define the differences in the advantages as e* = |Adv^xp i+1 — Adv^xp1i|. We 

now show that each of these differences must be negligible. 

e0: This difference between these two experiments is the probability the adversary can 

(when used as a subroutine) generate a proof of a false statement. This must be 

negligible by the soundness of the NIZK. 

ei: This difference between these two experiments is the probability the adversary 

can (when used as a subroutine) forge a valid signature on M*. This must be 

negligible by the existential unforgeability of the underlying signature scheme. 

e2: This difference between these two experiments is the probability the adversary 

can (when used as a subroutine) distinguish between the actual prover and the 

simulator. This must be negligible by the adaptive unbounded zero-knowledge 

of the NIZK. 

e3: First notice if qs is the number of signing queries that A makes, we may choose A 

to be 1 — l/qs to make £ occur with probability greater than l/((e)(gs — 1)), 

where e is the base of the natural logarithm. Thus we can use this adversary 

as a subroutine to create an algorithm that plays the CCA2 game against the 

encryption scheme. We make the obvious construction by replacing our own 
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decryption algorithm with decryption queries to the challenger of the CCA2 

game and choosing er*, _L as our challenge messages when the time comes. This 

constructed algorithm will have a t-$/((e)(qs — 1)) advantage in the game. Thus 

e3 must be negligible. 

Finally we notice that the output (M*, a*) of Experiment 4 is actually an existential 

forgery on M* as we have never queried the signing oracle on it! Thus Adv^'4 is 

negligible, and hence so is 

3.5 WVES Proofs of Security 

3.5.1 Unforgeability 

Theorem 3.5.1. The WVES verifiably encrypted signature scheme is (t,qs,qA,e)-

unforgeable if the W signature scheme is {f, g', e')-unforgeable, where 

t' = t + 0(qs + qA) and q' = qs and e' = e , 

Proof. We show how to turn a verifiably-encrypted signature forger A into a forger B 

for the underlying Waters signature scheme. 

Algorithm B is given a Waters signature public key A — e(P, P)a. It picks (3 <— 

Z/pZ, sets v <— f3P, and provides the adversary A with A and v. 

When A requests a verifiably encrypted signature on some message M, the chal

lenger B requests a signature on M from its own signing oracle, obtaining a signature 

(S1,S2). It picks s *— Z/pZ and computes 

K\ <— Si • sv and K2 *— S2 and K3 <— sP . 

The tuple (K1,K2, K3) is a valid verifiably encrypted signature on M. Algorithm B 

provides A with it. (Here B is simply evaluating EncSign, except that it uses its 

45 



www.manaraa.com

signing oracle instead of evaluating Sign directly.) 

When algorithm A requests adjudication of a verifiably encrypted signature (Ki, 

K2, K3) on message M under the challenge key A, B responds with Adj (fl, A, M, 

(Ki, K2, Ks)). Note that B knows the adjudicator's private key f3. 

Finally, A outputs a forged verifiably-encrypted signature (Kl,K2, KI) on some 

message M* = (raj, ...,m*k). Algorithm A must never have made a verifiably en

crypted signing query at M*. 

The challenger B computes 

S* *- KI - (3K*3 and S* K*2. 

Then we have 

k 

e(Sl,P)-e(S*2,u' + ^2m:uiy
1 

i=i 
k 

= ~e(Kl,P) • e(K*,u> + Y,™>iy
1} - e ( - / ? ^ , P ) 

j = i 
k 

= e(Kl,P) • e{K;,u' l ^ l t . , ) " 1 • e{Klv)~l = A , 
i = i 

and (S^,S2) is therefore a valid Waters signature on M*. The last equality follows 

from equation (3.8). Because A did not make a verifiably encrypted signing query 

at M*, neither did B make a signing query at M*, and the forgery is thus nontrivial. 

The challenger B outputs (S±, S2) and halts. 

Algorithm B thus succeeds whenever A does. Its running time overhead is O (1) for 

each of A's verifiably encrypted signing and adjudication queries, and for computing 

the final output. • 
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3.5.2 Opacity 

For convenience, we prove opacity by reduction from the aggregate extraction assump

tion: given (aP, /3P, 7P, 5P, (cry + (35) P), computing oqP is hard. Coron and Nac-

cache [CN03] showed that this assumption, introduced by Boneh et al. [BGL03], is 

equivalent to the Computational Diffie-Hellman problem. 

Theorem 3.5.2 (Coron-Naccache [CN03]). The aggregate extraction and Computa

tional Diffie-Hellman problems are Karp reducible to each other with 0(1) computa

tion.2 

Theorem 3.5.3. The WVES scheme is (t, qs,qA, e)-opaque if aggregate extraction is 

(£', e')-hardon G, where 

t' — t + 0(qs + qA) and q' = qs and e' = AkqAe . 

Proof. Given an algorithm A that breaks the opacity of the scheme, we show how to 

construct an algorithm B that breaks the aggregate extraction assumption. 

The challenger B is given values aP, (3P, 7P, and SP, along with (07 + (35) P; 

its goal is to produce a7P. It sets v <— (3P, Pi <— aP, and P2 <— 7P . It computes 

A<-e(P 1 ,P 2 ) = e(P,P)QT. 

Let A = 2qA. Algorithm B picks K <— {0, . . . , k}, x', xi,..., Xk <— {0, . . . , A — 1} 

and y', yu ..., yk <- Z/pZ and sets 

v! <— (x' — K\)P2 + y'P and M, <— XiP2 + yiP for i = 1 , . . . , k . 

It then interacts with A as follows. 
2 Strictly speaking, the amount of work is poly-logarithmic in the security parameter since the group 

element representations grow. The number of algebraic operations is constant. 
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Setup. Algorithm B gives to A the system parameters (P, u',ui,... Uk), the signer's 

public key A, and the adjudicator's public key v. Note that the private signing 

key is orf. 

Verifiably Encrypted Signing Queries. A requests a verifiably-encrypted signature 

o n M = (mi , . . . , rrik) G {0,1} under challenge key A and adjudicator key v. 

Define F = —KA + x' + J2i=i ximi anc* J = y' + X)£=i Vi™*- ^ F ̂ 0 mod p 

algorithm 5 proceeds as follows. It picks r <— Z/pZ and sets 

k 

S1^{-J/F)Pl + r{u' + Y,mi^) a n d S2 *-(-!/F)P1+rP . 

This is a valid W signature with randomness f = r — a / F : observing that 

u' + YH=\ miui = F • P2 + J • P,v/esee that 

S, = (-J/F)P1 + r(u' + Y,™iui) 
i=i 

= aP2 - (-a/F)(F • P2 + J • P) + r(F • P2 + J • P) 

k 

= a'yP + r(u' + ̂ 2 m>iUi) , 
i=l 

where for the second equality we have multiplied and divided by aP2. Algo-

rithm B then encrypts (5i, S2) hy choosing s <— Z/pZ and setting 

Ki <- Si + sv and K2 <- S2 and K3 <- sP . 

If F = 0, however, i3 picks r, s <— Z/pZ and sets 

î x <— (a"f + 7^)P + S7P + r («' + X]?=i miMi) a nd 

K2 <- rP and if 3 <- (5P) + sP . 

This is a WVES signature with randomness r, encrypted with randomness 8 + s. 

In either case, B returns to A the verifiably encrypted signature (K1,K2, K3). 
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Adjudication Queries. Suppose A requests adjudication on (Ki,K2,K3) for mes

sage M = (mi , . . . , mk). Algorithm B first verifies that (Ki,K2, K3) is valid 

and rejects it otherwise. Define F = — K\ + x' + J2i=iximi a nd J = y' + 

J2i=i yimi a s before. If F = 0 mod p, B declares failure and halts. Otherwise, 

it picks r <— Z/pZ and computes 

k 

Si <- (~J/F)P1 + r(u' + ^2 mlUi) and S2 <- (-1/F)P1 + r P 

as above, returning (S^, S2) to A 

(Note that A must previously have made a verifiably encrypted signing query 

at M, since otherwise we could use it to break the unforgeability of WVES.) 

Output. Finally, algorithm A outputs a signature (S\, S2) on a message M* = (m\, 

..., ml); it must not have queried its adjudication oracle at M*. Define F* = 

-K\ + X' + Yli=i xim*i md J* = V' + EjLi Vim*. If F* ^ 0 mod p, B declares 

failure and exits. Otherwise, we have v! + Yn=i m*Ui = J* • P, so that 

- 1 
z(Pi,P2) = A = e(Sl,P) • efau' + ]Tm*W/)" 

i=l 

= e(S*,P) • e(,S2V* • P)-1 = e{St - (J*)S*2,P) , 

and Si - (J*)S2 equals a^P, which is the solution to the aggregate extraction 

challenge; B outputs this solution and halts. 

The probability that B does not abort in any adjudication query is at least 1 — 1/A; 

since there are at most qA = A/2 such queries, B manages to answer all queries without 

aborting with probability at least 1/2. Having done so, B then receives a forgery such 

that F* = 0 modp with probability at least 1/(KX) > l/(2kqA). Thus B succeeds 

with probability at least t/{AkqA). (For more detailed probability analysis, see Waters' 

original proof [Wat05].) Algorithm 5's run-time overhead is 0(1) to answer each of 

^4's queries and to compute the final output. • 
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Scheme 

BGLS 

LMRS-1 

LMRS-2 

Ours 

R.O. 

YES 

YES 

YES 

NO 

Seq. 

NO 

YES 

YES 

YES 

Keys 

Chosen 

Chosen 

Reg. 

Reg. 

Size 

160 bits 

1024 bits 

1024 bits 

320 bits 

Verification 

I + 1 pairings 

21 exp. 

4/ mult. 

2 pair., Ik/2 mult. 

Signing 

1 exp. 

ver. + 1 exp. 

ver. + 1 exp. 

ver. + 1 exp. 

Table 3.1: Comparison of aggregate signature schemes. 

Signatures are by I signers; k is the output length of a collision resistant hash function; 

"R.O." denotes if the security proof uses random oracles. The key model indicates 

whether we are in the chosen-key model or the registered key model. 

3.6 Comparison to Previous Work 

In this section, we compare the schemes we have presented to previous schemes in the 

literature. For the comparison, we instantiate pairing-based schemes using Barreto-

Naehrig curves [BN05] with 160-bit point representation. Note that BLS-based con

structions must compute, for signing and verification, a hash function onto G. This is 

an expensive operation [BLS04, Sect. 3.2]. 

Sequential Aggregate Signatures. We compare our sequential aggregate signature 

scheme to the aggregate scheme of Boneh et al. [BGL03] (BGLS) and to the sequential 

aggregate signature scheme of Lysyanskaya et al. [LMR04] (LMRS). 

We instantiate the LMRS scheme using the RSA-based permutation family with 

common domain devised by Hayashi, Okamoto, and Tanaka [HOT04]. With this per

mutation family LMRS signatures do not grow by 1 bit with each signature, as is 

the case with the RSA-based instantiation given by Lysyanskaya et al. [LMR04]; but 

evaluating the permutation requires two applications of the underlying RSA function. 

Lysyanskaya et al. give two variants of their scheme. One places constraints on the for-
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mat of the RSA keys, thereby avoiding key certification; we call this variant LMRS-1. 

The other uses ordinary RSA keys and can have public exponent e = 3 for fast verifi

cation, but requires key certification, like our scheme; we call this variant LMRS-2. 

We present the comparisons in Table 3.6. The size column gives signature length 

at the 1024-bit security level. The Verification and Signing columns give the computa

tional costs of those operations; / is the number of signatures in an aggregate, and k is 

the output length of a collision-resistant hash function. 

One drawback of our scheme is that a user's public key will be quite large. If 

we use a 160-bit collision resistant hash function, then keys will be approximately 

160 group elements and take around 10KB to store. While it is desirable to achieve 

smaller public keys, this will be acceptable in many settings such as SBGP where 

achieving the signature size is a much more important consideration than the public key 

size. Additionally, Naccache [Nac07] and Chatterjee and Sarkar [CS05] independently 

proposed ways to achieve shorter public keys in the Waters signature scheme. Using 

these methods we can also achieve considerably shorter public keys. 

Multisignatures. We compare our multisignature scheme to the Boldyreva multisig-

nature [Bol03]. We present the comparisons in Table 3.6. The size column gives 

signature length at the 1024-bit security level. The Verification and Signing columns 

give the computational costs of those operations; I is the number of signatures in a 

multisignature, and k is the output length of a collision-resistant hash function. 

Verifiably Encrypted Signatures. We compare our verifiably encrypted signature 

scheme to that of Boneh et al. [BGL03] (BGLS). We present the comparisons in Ta

ble 3.6. The size column gives signature length at the 1024-bit security level. The 

Verification and Generation columns give the computational costs of those operations; 
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Scheme 

Boldyreva 

Ours 

R.O. 

YES 

NO 

Key Model 

Registered 

Registered 

Size 

160 bits 

320 bits 

Verification 

2 pairings 

2 pairings, k/2 mult. 

Signing 

1 exp. 

1 exp. 

Table 3.2: Comparison of multisignature schemes. 

Multisignatures are by / signers; k is the output length of a collision resistant hash 

function; "R.O." denotes if the security proof uses random oracles. 

Scheme 

BGLS 

Ours 

R.O. 

YES 

NO 

Key Model 

Registered 

Registered 

Size 

320 bits 

480 bits 

Verification 

3 pairings 

3 pairings, k/2 mult. 

Generation 

3 exp. 

4 exp. 

Table 3.3: Comparison of verifiably encrypted signature schemes. 

We let k be the output length of a collision resistant hash function. "R.O." specifies 

whether the security proof uses random oracles. 

k is the output length of a collision-resistant hash function. 

3.7 Conclusions and Open Problems 

In this chapter we gave the first aggregate signature scheme which is provably se

cure without random oracles; the first multisignature scheme which is provably secure 

without random oracles; and the first verifiably encrypted signature scheme which is 

provably secure without random oracles. All our constructions derive from the recent 

signature scheme due to Waters [Wat05]. All our constructions are quite practical. 

Signatures in our aggregate signature scheme are sequentially constructed, but 

knowledge of the order in which messages are signed is not necessary for verifica

tion. Additionally, our scheme gives shorter signatures than in the LMRS sequential 

aggregate signature scheme [LMR04] and has a more efficient verification algorithm 
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than the BGLS aggregate signature scheme [BGL03]. This gives some interesting 

tradeoffs for practical applications such as secure routing and proxy signatures. 

Some interesting problems remain open for random-oracle-free aggregate signa

tures: 

1. To find a scheme which supports full aggregation, in which aggregate signatures 

do not need to be sequentially constructed. While many applications only require 

sequential aggregation, having a more general capability is desirable. 

2. To find a sequential aggregate signature scheme provably secure in the chosen-

key model. 

3. To find a sequential aggregate signature scheme with shorter user keys. The size 

of public keys in our system reflects the size of keys in the underlying Waters 

signature scheme. Naccache [Nac07] and Chatterjee and Sarkar [CS05] have 

proposed ways to shorten the public keys of the Waters IBE/signature scheme 

by trading off parameter size with tightness in the security reduction. It would 

be better to have a solution in which the public key is just a few group elements. 

The last two are particularly important for certificate chain compression, proposed by 

Boneh et al. [BGL03] as an application for aggregate signatures. If keys need to be 

registered with an authority then a chaining application is impractical, and having large 

public keys negates any benefit from reducing the signature size in a certificate chain, 

since the keys must be included in the certificates. 
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CHAPTER 4 

Non-Interactive Shuffle with Pairing-Based Verifiability 

We briefly describe the organization of this chapter (see the introductory discussion in 

Chapter 1, Section 1.2). 

In this chapter, we present an efficient non-interactive verifiable shuffle by using 

bilinear pairings. We begin in Section 4.1 by giving background information pertinent 

to our results. In Section 4.2, we present two new cryptographic assumptions and 

provide heuristic evidence by showing that they hold in the generic group model. In 

Section 4.3, we present our scheme QC-STilAT and prove its security. In Section 4.4, 

we remark on shuffling ciphertexts of a different pairing-based cryptosystem under a 

different assumption. Finally, in Section 4.5 we conclude and discuss open problems. 

4.1 Background 

4.1.1 BBS Encryption 

The BBS cryptosystem was introduced by Boneh, Boyen and Shacham [BBS 04]. Fol

lowing prior notation, we work in a bilinear group (p, G, G T , e, P). The public key 

is of the form (Q = xP, R = yP). The secret key is (x, y) G (Z/pZ)2. To encrypt 

m € C, we choose random s,t G Z/pZ and let the ciphertext be 

(u, v, w) := (sQ, tR, (s + t)P + m). 
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To decrypt a ciphertext (u, v, w) G G3, we compute m = w — (l/x)u — (\/y)v. The 

BBS cryptosystem is semantically secure under chosen plaintext attack if the Deci

sional Linear Problem is hard in the bilinear group. We refer to Section 2.3.2 for a 

formal definition of this assumption. 

4.1.2 Shuffling BBS Ciphertexts 

The BBS cryptosystem is homomorphic in the sense that entrywise addition1 of two 

ciphertexts yields an encryption of the addition of the plaintexts. We have: 

(sQ,tR:(s + t)P + m) 

+ (SQ,TR,{S + T)P + M) = {{s + S)Q,{t + T)R, 

{s + S + t + T)P+(m + M)). 

It is easy to make a random shuffle of BBS ciphertexts. Given n input ciphertexts, 

we permute them randomly and then re-encrypt them by multiplying them with ran

dom encryptions of the identity element of G. Multiplication with encryptions of 1 

preserves the plaintexts by the homomorphic property, but the plaintexts now appear 

in permuted order. If the Decisional Linear Assumption holds, the BBS cryptosystem 

is semantically secure and thus the permutation is hidden. For notational purposes, we 

will let {xi} denote {£i}"=1. 

Definition 4.1.1. A shuffle of n BBS ciphertexts {(«;, vi} Wi)} is a list of output cipher-

texts {(Ui, Vi, Wi)} such that there exists some permutation -K G Sn and randomizers 

{($,7;)} so that: 

(V«) Ui = U*® + (Si)Q A K = vn{i) + (TJR A Wi = w<i) + {Si + Ti)P. 

1Recall that we use additive notation for our source groups. By addition here we mean the group 
operation. 
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4.1.3 Non-interactive Zero-Knowledge Arguments 

We will construct non-interactive zero-knowledge (NIZK) arguments for correctness 

of a shuffle of n BBS ciphertexts. Informally, such an argument will demonstrate that 

the shuffle is correct, but will not reveal anything else, in particular the permutation will 

remain secret. We will now define NIZK arguments with perfect completeness, perfect 

zero-knowledge and T^CQ-soundness. The notion of co-soundness in NIZK arguments 

for NP-languages was introduced in the full paper of [GOS06b, GOS06a]. We will 

give some further intuition about these arguments after the formal definitions. 

An NIZK argument for 71 with T^-soundness consists of six probabilistic poly

nomial time algorithms: a setup algorithm Setup, a CRS generation algorithm K, a 

prover Pr, a verifier V and simulators (Si, S2). The setup algorithm outputs some ini

tial information GK. The CRS generation algorithm produces a common reference 

string a corresponding to the setup. The prover takes as input (GK, a, x, w) and pro

duces a proof ip. The verifier takes as input (GK, a, x, tp) and outputs v a l i d if the 

proof is acceptable and i n v a l i d if the proof is rejected. The simulator Si takes as 

input GK and outputs a simulated common reference string a as well as a simulation 

trapdoor r. S2 takes as input GK, a, r, x and simulates a proof ip. 

Definition 4.1.2. We call (Setup, K, Pr, V, S1,S2) an NIZK argument for a relation 

71 with 7£co-soundness if for all non-uniform adversaries A we have completeness, 

soundness and zero-knowledge as described below. 

Perfect completeness: 

Pr GK *- Setup(lfe) ; a <- K(GK) ; (x,w) <- A(GK,a) ; 

ip <- Pr(GK, a, x, w) : 

(GK,x,w) ilZM V(GK,a,x,$) = v a l i d = 1. 
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Computational 7£co -soundness: 

Pr GK <- Setup(lfc) ; a <- K(GK) ; {x^,wco) <- ,4(GK, a) : 

V(GK, <j,:r,*0) = v a l i d A (GK,x, wm) G 7£c 

Perfect zero-knowledge: 

0. 

Pr 

Pr 

GK <- Setup(lfc) ; a <- K(GK) ; (St, ar, w) <- .4(GK, a) ; 

^ «- Pr(GK, o-, a:, w) : (GK,x,«;) G ft A .A(St,V0 = 1 

GK <- Setup(lfe) ; (<T,T) <- S^GK) ; (St,z,w) <- ,A(GK,<T) 

^ <- 52(GK,CT,r,ar) : (GK,:r,w) G ft A ^ (S t , ^ ) = 1 

We remark that if ft ignores GK then ft defines a language in NP. The defini

tion given here generalizes the notion of NIZK arguments by allowing ft to depend 

on a setup. The setup we have in mind in this chapter, is to let GK be a description 

of a bilinear group. Given GK describing a bilinear group, the relation ft defines a 

group-dependent language L. It is common in the cryptographic literature to assume 

an appropriate finite group or bilinear group has already been chosen and build pro

tocols in this setting, so it is natural to consider NIZK arguments for setup-dependent 

languages as we do here. 

Our definition also differs in the definition of soundness, where we let ftco be a 

relation that specifies what it means to break soundness. Informally, computational 

ftco-soundness can be interpreted as it being infeasible for the adversary to prove x G 

L if it knows x G Lco. We remark that the standard definition of soundness is a special 

type of ftco-soundness. If R ignores GK and ft^ ignores GK, wco and contains all 

x £ L, then the definition given above corresponds to saying that it is infeasible to 

construct a valid proof for a; ̂  L. 

Let us explain further, why it is worthwhile to consider ft^-soundness in the con

text of non-interactive arguments with perfect zero-knowledge instead of just using 
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the standard definition of soundness. The problem with the standard definition appears 

when the adversary produces a statement x and a valid NIZK argument without know

ing whether x G L or x ^ L. In these cases it may not be possible to reduce the 

adversary's output to a breach of some underlying (polynomial) cryptographic hard

ness assumption. Abe and Fehr [AF07] give a more formal argument for this. They 

consider NIZK arguments with direct black-box reductions to a cryptographic hard

ness assumption and show that only languages in P/poly can have direct black-box 

NIZK arguments with perfect zero-knowledge. Since all known constructions of NIZK 

arguments rely on direct black-box reductions this indicates that the "natural" defini

tion of soundness is not the right definition of soundness for perfect NIZK arguments. 

We note that for NIZK proofs there is no such problem since they are not perfect 

zero-knowledge except for trivial languages; and in the case of interactive arguments 

with perfect zero-knowledge this problem does not appear either because the security 

proofs rely on rewinding techniques which make it possible to extract a witness for the 

statement being proven. 

The generalization to 72.co-soundness makes it possible to get around the problem 

we described above. The adversary only breaks 7£co-soundness when it knows a wit

ness wco for x G Leo. By choosing 1Zco the right way, this witness can make it possible 

to reduce a successful T^co-soundness attack to a breach of a standard polynomial cryp

tographic complexity assumption. 

At this point, one may wonder whether it is natural to consider a soundness def

inition where we require the adversary to supply some wco. It turns out that many 

cryptographic schemes assume a setup where such a wm is given automatically. One 

example is shuffling that we consider in this chapter: when setting up a mix-net using 

a homomorphic threshold cryptosystem, the threshold decryption keys can be used to 

decrypt the ciphertexts and check whether indeed they do constitute a shuffle or not. 
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In this chapter, the setup algorithm will be Setup that outputs a description of a 

bilinear group. The relation 11 will consist of statements that contain a public key for 

the BBS cryptosystem using the bilinear group and a shuffle of n ciphertexts. The 

witness will be the permutation used in the shuffle as well as the randomness used for 

re-randomizing the ciphertexts. In other words: 

K = { ( (p ,G ,G T , e ,P ) , (/^{(ui^Wi^mMWi)}), (7r,{($,T;)})) 

TT € Sn AVi:Ui = uv{i) + (Si)Q A Vi = v<{) + (T^R A 

Wi = w<i) + (Si + Ti)Py 

The relation 72-co will consist of non-shuffles. The witness wco will be the decryption 

key, which makes it easy to decrypt and check that there is no permutation matching the 

input plaintexts with the output plaintexts. As we remarked above, NIZK arguments 

for correctness of a shuffle are usually deployed in a context where such a decryption 

key can be found. It is for instance common in mix-nets that the mix-servers have a 

threshold secret sharing of the decryption key for the cryptosystem used in the shuffle. 

NIZK arguments with H^-soundness for correctness of a shuffle therefore give us 

exactly the guarantee we need for the shuffle being correct. 

ftco = {((p,G,GT,e,P),(f,h,{(ui,vi,wi)}i{(Ui,Vi,Wi)}),(x,y)"j 

x,ye Z/pZ AQ = xPAR = yPAWe SnBi : 

Wi - (l/x)Ui - (l/y)Vi ^ w^ - (l/x)un(i) - (l/y)v^i) J. 

4.1.4 Non-interactive WI Proofs for Bilinear Groups 

We will employ the non-interactive proof techniques of Groth and Sahai [GS08]. They 

allow a prover to give short proofs for the existence of group elements which satisfy 

a list of so-called pairing product equations. With their techniques, one can prove 

that there exists e G and 4>i,---,<t>n £ Z/pZ such that they simultane

ously satisfy a set of pairing product equations, for instance YU=1e(di,Xi) = 1 and 
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Y^i=i{4>i)xi — 0- O n e instantiation of their scheme works over bilinear groups where 

the Decisional Linear Assumption holds. 

Their scheme has the following properties. It has a key generation algorithm that 

outputs a common reference string consisting of 8 group elements. These 8 group 

elements specify the public key for two commitment schemes: one for group elements 

in G and one for elements in Z/pZ. In their proof, the prover commits to the witness by 

committing to the group elements x\,..., xn G G and the values (pi,..., <j)n 6 Z/pZ. 

After that the prover makes non-interactive proofs that the committed elements satisfy 

all the pairing product equations. 

There are two ways of setting up the commitment schemes. One can choose the 

common reference string such that both commitment schemes are perfectly binding, 

in which case the proof has perfect completeness and perfect soundness. With a per

fect binding key, the commitments to group elements are BBS ciphertexts, so we can 

decrypt the commitments to learn rc1 ; . . . , xn. 

Another way to choose the common reference string is to have perfectly hiding 

commitment schemes. In this case, we can set up the commitment to the values 

0 i , . . . , 4>n as a perfect trapdoor commitment scheme. We can create a commitment 

and two different openings to respectively 0 and 1 for instance. When we have per

fectly hiding keys in the common reference string, the non-interactive proof has per

fect completeness and perfect witness-indistinguishability. In other words, an adver

sary that sees a proof for a statement for which two or more witnesses exist, gets no 

information whatsoever as to whether one witness or the other was used in the non-

interactive proof. 

We write (̂ binding, êxtraction) <- Kbindmg(p, G, GT, e, P), when creating a perfectly 

binding common reference string with extraction key êxtraction for the commitments 

to group elements in G. We write (adding, Ttrapdoor) <— Kniding(p,G,GT,e,P) when 
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creating a perfect hiding common reference string with trapdoor Ttrapdoor for the com

mitments to values in Z/pZ. Perfect binding common reference strings and perfect 

hiding common reference strings are computationally indistinguishable if the Deci

sional Linear Assumption holds for the bilinear group we are working over. 

4.2 Cryptographic Assumptions 

The security of our NIZK argument for correctness of a shuffle will be based on three 

assumptions: the Decisional Linear Assumption, the Permutation Pairing Assump

tion and the Simultaneous Pairing Assumption. The BBS cryptosystem and the non-

interactive proofs of Groth and Sahai rely on the Decisional Linear Assumption. The 

other two assumptions are needed for the NIZK argument for correctness of a shuffle. 

We will now formally define these two new assumptions and give heuristic reasons for 

believing them by showing that they hold in the generic group model. 

4.2.1 Permutation Pairing Assumption 

The Permutation Pairing Problem is: Given (p, G, GT, e, P) and g± := xxP, ...,gn:= 

xnP,7i '•— %\P, • • • ,ln '•= xln,P f° r random G Z/pZ find elements au 

..., an, 6 1 , . . . , bn £ G such that the following holds: 

n n 

5> = x> 
i=i i = i 

n n 

X)* = & 
i=l i=\ 

e(ai,aj) = e(P,bi) for i = 1.. .n 

{a,i} is not a permutation of {^} 
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Note that if {a;} is a permutation of {g»}, then by the third equation {fej} is {7;} 

permuted in the same way. 

Observe that permutations trivially satisfy the first three conditions and not the 

fourth, but one could imagine some particular choice of the {a,} and {bi} would sat

isfy all four conditions. The Permutation Pairing Assumption holds if finding such a 

suitable choice is computationally infeasible. 

Definition 4.2.1. The Permutation Pairing Assumption holds if for all non-uniform 

polynomial time adversaries A we have: 

Pr [GK:=(p ,G,G T , e ,P) <- Setup(lfc) ; Xl,... ,xn £• Z/pZ ; 

{9i} := {xiP} ; H} := {xjP} ; ({a,}, {h}) «- A(GK, {9i}, {7i}) : 
n n 

i=l i=\ 

(yi)e(ai,ai)-e(P,bi)-
1 = l A 

{cii} is not a permutation of {$;} s=s 0 

4.2.2 Simultaneous Pairing Assumption 

The Simultaneous Pairing Problem is: Given (p, G, GT, e, P) and gx := x1P,..., 

gn := xnP, 71 := xjP,..., 7„ := a;^P for random xx,..., xn e Z/pZ find a non-

trivial set of elements / / l r . . , / ^ £ G such that the following holds: 

n n 

«=i «=i 

The intuition behind this problem is that it may be hard to find a set of non-trivial 

elements to simultaneously satisfy two pairing products of "independent" sets of ele

ments. The Simultaneous Pairing Assumption holds if this problem is hard. 

Definition 4.2.2. The Simultaneous Pairing Assumption holds if for all non-uniform 
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polynomial time adversaries A we have: 

Pr GK:= (p ,G ,Gr ,e , .P )<-Se tup( r ) ; xu ... ,xn £• Z/pZ ; 

{9i\ := {xtP} • {7J := R 2 P} ; {^} <- A(GK, {gz}, {7l}) 
n n 

J|eO*t,0i) = 1 A n e (^ '^) = 1 A 3i : /ij ^ 1 « 0 
i= l i=l 

4.2.3 Our Assumptions in the Generic Group Model 

We will provide heuristic evidence for our new assumptions by showing that they hold 

in the generic group model [Sho97]. In this model the adversary is restricted to using 

only generic bilinear group operations and evaluating equality of group elements. 

We accomplish this restriction of the adversary by using a model of the bilinear 

group where we encode the group elements (or equivalently we encode their discrete 

logarithms) as unique random strings and letting the adversary see only this represen

tation of the group elements. We then provide the adversary with a bilinear group 

operation oracle such that it can still perform group operations. 

Let us give a few more details. We start by picking a random bilinear group 

(p, G, GT, e, P) <— Setup(lfc), which the adversary gets as input. We also pick ran

dom bijections [•] : Z/pZ —>• G and [[•]] : Z/pZ —> GT- We give the adversary access 

to an oracle that operates as follows: 

• On input (scalar, a) return [a], 

• On input (add, [a], [b]) return [a + b]. 

• On input (mult, [[a]], [[b]]) return [[a + b]]. 

• On input (map, [a], [b]) return [[ab]]. 

This oracle corresponds to the effect scalar multiplications (e.g. aP), group operations 
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and using the bilinear map have on the discrete logarithms (base P in G and base 

e(P, P) in G T ) of group elements. Please note that other operations such as inversion 

of a group element for instance can be easily computed using these group operations 

since the group order p is known to the adversary. 

Theorem 4.2.3. The Permutation Pairing Assumption holds in the generic (bilinear) 

group model. 

Proof. Let us first formulate the Permutation Pairing Assumption in the generic group 

model. We generate (p,G,GT ,e ,P) <- Setup(lfc). We pick [•] : Z/pZ -»• G and 

[[•]] : Z/pZ —> GT as random bijective functions. We pick xi,... ,xn <— Z/pZ. 

We now give the adversary A the following input: (p, G, GT, e, P, {[#»]}, {[£;]}) and 

access to the bilinear group operation oracle. A is computationally unbounded but can 

only make a polynomial number of queries to the bilinear group operation oracle. The 

challenge for A is to find {([<3j], [&j])} so: 

n n n n 

i = l i = l i=l i=l 

In the generic group model we can without loss of generality assume the adversary 

computes [a*], [fcj] via repeated calls to the group operation oracle. This means we have 

n n n n 

for values {a^}, {a^}, {ri}, {hj}, {Aj}> Is*} m a t c a n be deduced from the calls to 

the group operation oracle. 

Consider now the first conditions on the adversary being successful: 
n n n n 

J2 * - Y^Xi = ° A Ylbi - XX2 = ° A Vi: Q2 = bi-
i=l i=l i=l i=\ 

These are polynomials over unknowns xi,...,xn that are randomly chosen. The ad

versary only has indirect access to them by using the bilinear group operation oracle. 
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The adversary can choose two strategies for satisfying the equations. It can pick the 

values ctij,aij,ri,bij,Pij,Si so the polynomials are identical to zero in 

Z/pZ[xi,... ,xn] or it can hope to be lucky that the polynomials evaluate to zero 

on the random choice of x\,..., xn <— Z/pZ. The Schwartz-Sippel theorem tells us 

that a guess according to the latter strategy has only negligible probability of being 

successful. Since the adversary can access the bilinear group operation oracle only a 

polynomial number of times, it can only verify a polynomial number of guesses, so 

the latter strategy has negligible success probability. 

Let us now see what happens if the adversary follows the first strategy. The first 

equation gives us: 

n / re n \ n 

Yl (^Zx3aa + J2xhij+ri) - YlXi = °-
i=\ \ j = l j=l / i=l 

Viewed as a multivariate polynomial equation over variables x\,..., xn we must have 

for all j , EILia*? = ! a n d ELi^i = ° a n d E L i r i = °-

Next, if n™=A = Y^i=ix1 ^en ^ m u s t be the case that 

re I n re \ re 

Yl Yxihii + Y^rfPv + s* ) ~ Yx<i = °-

When viewed as a polynomial in xi,... ,xn, we see that we must have for all j , 

E r = i ^ = 0 and EtiPij = 1 and £^=1s* = 0. 

Finally, if (Vi) a? = 6; then it must be the case that 

re n n n 

YYlX3Xkaiiaik + Y^llx2JX'kaiiaik + ri 
3=1 k=l j=l k=l 

n n n n 

+2Y^2xjX2
kaijaik + 

j=i fc=i j=i 3=1 
n re 

= y ^jbjj + y jXjPij + S{ 

3=1 3=1 
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Once again by viewing this as a polynomial equation, for all i we must have that 

a>ijOtik = 0. Also dijdik = 0 when j ^ k, rf = s{, bzj = 2a{jri, fy = a?- + 2 ^ ^ . 

We now consider what the matrix A = (a^) must be. Each row of A has at most 

one non-zero entry by the fact that aijaik = 0 when j ^ k. Also, each column must 

sum to 1 by E™=ia*j = 1- These two facts combined imply A has exactly one 1 in each 

column and each row, thus A is a permutation matrix. Since permutation matrices are 

invertible, from the equations YH=iaHaik = E L i 0 = °» E L i 0 ^ = | E L ^ ' = °> 

we obtain that a^ = 0 and n = 0. Therefore, the {a,} are a permutation of the 

{xi\. D 

Theorem 4.2.4. The Simultaneous Pairing Assumption holds in the generic (bilinear) 

group model. 

Proof. Let us first formulate the Simultaneous Pairing Assumption in the generic 

group model. We generate (p,G,GT ,e ,P) <- Setup(lfc). We pick [•] : Z/pZ -» G 

and [[•]] : Z/pZ —> GT as random bijective functions. We pick xi,...,xn <— Z/pZ. 

We now give the adversary A the following input: (p, G, GT, e, P, {[#;]}, {[a;|]}) and 

access to the bilinear group operation oracle. A is computationally unbounded but can 

only make a polynomial number of queries to the bilinear group operation oracle. The 

challenge for A is to find non-trivial {[m«j]} so E™=i AW = 0 a n ^ E"=i AW? — 0-

The Simultaneous Pairing Assumption in the generic model says that any adversary A 

has negligible probability of succeeding in this game. 

Without loss of generality we can think of A as being restricted to computing {[//,]} 

using the bilinear group operation oracle only. This means it chooses 

n n 

3=1 3=1 

for known a^, OLIJ and r,. 
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A successful adversary chooses these values so both of these equations are satis

fied: 

n / n n \ 

Yl ( J2X3aii + Ylx2JaV + Ti ) Xi = 0 

n / n n \ 

«=i \ j = i i = i / 

We can view them as multi-variate polynomials in x\,..., xn which are chosen at ran

dom. The adversary never sees x1,..., xn, it only has indirect access to them through 

the group operation oracle. There are two strategies the adversary can use: It can se

lect a,ij,aij,ri so the two polynomials have zero-coefficients or it can hope to be lucky 

that the random choice of xi,..., xn actually evaluates zero. The Schwartz-Sippel 

theorem tells us that a guess has negligible chance of being correct when x\,..., xn 

are chosen at random from Z/pZ. Since the adversary can access the bilinear group 

operations oracle only a polynomial number of times, it can only verify the correct

ness of a polynomial number of guesses. The latter strategy therefore has negligible 

success-probability. 

Let us now consider the former strategy, where the adversary chooses the coeffi

cients of the polynomials in Z/pE[xi,..., xn] so they are the zero-polynomials. Look

ing at the coefficients for the first polynomial we see that we must have r^ = 0 and 

a^ = 0. Looking at the coefficients of the second polynomial we see that a^ = 0. The 

adversary can therefore only find the trivial solution /.ti = . . . = //„ = 0. • 

4.3 NIZK Argument for Correctness of a Shuffle 

We will now present an NIZK argument for correctness of a shuffle of BBS ciphertexts. 

The common reference string contains 2n elements {#» := XiP} and {^ := xfP} for 

random x\,..., xn e Z/pZ. The statement contains a public key (/, h) and a set of n 
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input ciphertexts {(ui,Vi,Wi)} and a set of output ciphertexts {(Ui,Vi,Wi)} that may 

be a shuffle of the input ciphertexts. 

The first part of the NIZK argument consists of setting up pairing product equations 

that can only be satisfied if indeed we are dealing with a shuffle. The prover will use 

a set of variables {a;} and {bi} in these pairing product equations. She will set up 

a Permutation Pairing Problem over these variables to guarantee that {(OJ, bi)} are a 

permutation of {(#*, 7,)}. 

Assume now that {(a;, bi)} are a permutation of {(&, 7;)}. Let {m;} be the plain

texts of {(ui,Vi,Wi)} and {Mi} be the plaintexts of {(Ui, Vi, Wi)}. The prover also 

sets up equations such that H™=1e(ai, M{) = YTi=ie{9hmi) a n d YYi=ie(Pi, Mi) = 

nLi e (7 i ' m *)- Since {(a,i,bi)} are a permutation of {(^,7;)}, then there exists a 

permutation T £ Sn so 

n n 

\\e(gh M^-ifi) - wi*) = 1 A J J e ^ , Mn-i^ - m^ = 1. 
i=l i = l 

This is a Simultaneous Pairing Problem, and assuming the hardness of this problem 

we will have M„-i(i) = rrii for all i. 

To give further intuition of the construction, consider a naive protocol where the 

prover sends the permutation directly to the verifier. Denote a; := gw^ and bi := 7^ ) . 

With Ui = M (̂i) + 5i(5, Vi = ^ w + TiR, Wi = w„.(i) + (5» + Ti)P we have: 

\\e(ah u^{i) + 5iQ) = e(^S ,
iai,Q)JJe(5f7r(i),M7r(i)) 

i = l i = l i = l r=l i = l 

i = l 

JJe(ai, vw{i) + 7*12) = e (^S ,
i a i , R) J J e (^ w , u w ( i ) ) 

i = l i = l 2=1 i = l i = l 

i = l 
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JJe(a i 5 w^ + (Si + Ti)P) = e ^ S ^ , P) JJe(pw(i ), ww{{)) 
i=l i=\ i=l 

n 

= e(cw,P)Y[e(gi,Wi), 

where cu = X)i=i*%a») ̂  = YH=\Tiai a n d c«< = Z)iLi(^» + ^ ) a ; - By construction, 

cw = cu + cv. In addition, we may look at the equations by pairing the {bi} with 

the Ui,Vi, and Wi. From this we obtain another three equations, and we define new 

elements c'u = Y^i=\Sih, 4 = ]C"=i^&» c™ = CL + 4 - In t o t a l w e n a v e six equations: 
n n n n 

JJe(oi, tfi) = e(cu, Q ) ! ! 6 ^ ' M * ) Yle(bi, ui) = e ( C Q)Y[e(li, ui) 
i=l 1 = 1 i— 1 i = l 

n n 72 7z 

JJe(a i ; Vi) = e(cv, R) JJe(&, ^ ) I I e ( 6 * ' ^ ) = e(c*' ̂ ) I I e ( 7 i ' Vi"> 
i = l i = l i = l i=l 
n n n n 

\\e{au Wi) = e(cu + cv, P) JJefa, w;) J Je (k , Wi) = e(c'u + c'v, P) J J e ^ , w*) 
i = l i = l i = l - i=\ 

A naive non-interactive argument would be to let the prover send ir, cu, cv, du, c'v to the 

verifier. The verifier can check the six above equations himself for the verification step. 

The naive protocol described is complete by observation. We also have the following 

lemma: 

Lemma 1. The naive protocol is 7£co-sound. 

Proof. The idea behind 7?.co-soundness is to look at the underlying messages. If a 

dishonest prover were to convince a verifier with a non-shuffle as well as produce 

a witness (decryption key) wco = (x,y), we can "decrypt" the equations checked 

by the verifier. Namely, if we let m ; = Wi — (l/x)ui — (l/y)fj and M» = Wi — 

(l/x)Ui—(l/y)Vi, then by applying the same algebraic manipulations to the equations, 

we obtain: 
• l / i r ° 1-1/2/1 \\e{ahUi)\ [ne(a^)j in^'W*) 

i=l i=l i=l 

[ -] —1/x r _—_ -i — 1/y r 

e(c tJ,(5)lle(^,M i)j ^ ( c ^ ^ j j e ^ , ^ ^ \e{cu + c „ , P ) | | e ( ^ , Wi) i=\ i = l i=l 
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This gives us YYl=1e{ah Mi) = e(-cu, P)e(-cv, P)e(cu + cv,P)\\^=le(gumi) = 

n™=A9i,rrii)-

In a similar way we can show that Yl™=1e(bi, Mi) = Y\l=ie{liimi)- Observe that 

the equations may be rearranged to be nr=ie(/^> 9i) = 1 an(^ YYi=\e{^h 1%) = 1 where 

Hi = rrii - M^-i(i). By the Simultaneous Pairing Assumption, it is infeasible for 

the prover to find non-trivial fa satisfying these two equations and thus we reach a 

contradiction. • 

The downfall of the naive protocol is that it completely reveals the permutation. In the 

actual NIZK argument, we will instead argue that there exist elements {a*} and {hi} 

that satisfy the equations above rather than revealing them directly. We accomplish 

this by making a GS proof for the set of pairing product equations given earlier. We 

now give a description of our NIZK argument for a valid shuffle, QL-SWAT. 

Setup: Generate a bilinear group GK := (p, G, GT, e, P) <— Setup(lfc). 

Common reference string: Generate a perfectly hiding common reference string 

(.""hiding) ^trapdoor ) <— Khidmg(p, G, G-r,e,P) to get perfectly witness-

indistinguishable GS proofs. Pick random xi,...,xn <— Z/pZ and compute 

\/i : g{ := x{P, 7; := x\P. 

The common reference string is a := (crhiding, {#;}, {7;}). 

Shuffle statement: Public key (Q, R) for the BBS cryptosystem. Input ciphertexts 

{(ui,Vi,Wi)} and output ciphertexts {(Ui,Vi,Wi)}. 

Prover's input: Permutation TT e Sn and randomizers {(Si,Ti)} so U{ = u^i) + 

SiQ , Vt = vn(i) + TiR and Wt = w<{) + (5. + Tt)P for all i. 

Proof: The prover sets up the following pairing product equations: 

0 = 1 m o d p, <pdu = 0, 4>dv = 0, (f)dw = 0, (j)d'u = 0, 4>d'v = 0, 0<4 = 0, 
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n 

J^(<M - fai) = 0, ^2((pbi - (hi) = 0, (Vi) e(cti, a*) = e(P, 6;) 
j = l i = l 

e ( 4 , i : ) ) n e ( a ^ ^ ) = e(cUiQ)'[[e(gi,ui) 

e(d'u,P)Yl<k,Ut) = e « , g ) n e ( 7 i , M i ) 
e(^>^)rie(a^^) = e(c„>^)ne(^>v*) 
e « ^ ) n ^ i , ^ ) = e(c'v,R)Y[e(li,vi) 

e(dw,P)Y[e(ai,Wi) = e(cM + cv,g) Y[e(9i,Wi) 

e{d'w,P)Y[e(bi,Wi) = e{du + dv,g)Y[e^i,Wi) 

A witness for satisfiability of the equations can be computed as: 
n n n n 

<t> := 1, cu := J ^ o * , c„ := J ^ T ^ , c'u := J ^ S A , 4 := J ^ T ^ , 
i = l «=1 i = l i = l 

Vi : a; : = #„-(;), fe, : = 77 r( i ) , 

and setting the remaining variables to 0. The prover generates a GS proof 

tjj that there exists a 0 e Z/pZ and group elements {a,}, {^},cu,c^,c4,4, 

du, dv, dw, d'u, d'v,d'w that satisfy the equations. 

Verification: The verifier accepts the non-interactive argument if and only if the GS 

proof tfj is valid. 

Theorem 4.3.1. The protocol QL-SWAT is a non-interactive perfectly complete, 

computationally Hco-sound, perfect zero-knowledge argument of a correct shuffle of 

BBS ciphertexts under the Decisional Linear Assumption, Permutation Pairing As

sumption, and Simultaneous Pairing Assumption. 

Proof. As we see in the protocol, the prover can generate the witness for the GS proof 

herself. Perfect completeness follows from the perfect completeness of the GS proofs. 

We will now prove that we have perfect zero-knowledge. The following is a de

scription of how the simulator S = (Si, S2) will generate a transcript. 
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Simulated common reference string: The simulator S\ runs the common reference 

string generation protocol. It sets r := (rtrapdoor, xi,...,xn) and outputs (a, r ) . 

Shuffle statement: Public key (Q, R) for the BBS cryptosystem. Input ciphertexts 

{(ui, vh uii)} and output ciphertexts {([/*, Vh W{)}. 

Simulator's input: The simulator S2 receives the shuffle statement and (a, r). 

Simulated proof: Create a trapdoor commitment with double opening to 4> — 0 and 

4>— 1. Compute 

n n n 

du .— y XjU{^ uv . y jXjVj^ Qjw .— y^X{Wjj 

i=\ i=l i=l 

n 
d'u := ^2x1uh d'v := ^xlvi} d'w := Y[x2

iWi. 
i=\ i=\ i=\ 

Set the remaining variables to 0 and create a perfect witness indistinguishable GS 

proof i\) that there exists a <f> € Z/pZ and group elements {a^}, {bi}, cu, cv, du, dv, 

du,dv,dw,d'u, d'v7d'w that satisfy the required equations. 

By construction, the common reference strings are generated in the same way. The 

only difference between a real proof and a simulated proof is the witness given to the 

GS proof. By the perfect witness-indistinguishability of the GS proof, real proofs and 

simulated proofs are perfectly indistinguishable. 

It remains to prove that we have computational 72-co-soundness. The adversary is 

trying to output a public key (Q, R) and a non-shuffle of n input ciphertexts and n 

output ciphertexts, a convincing NIZK argument xf; of it being a shuffle, and a decryp

tion key (x, y). The relation 72-co is a polynomial time decidable relation that tests that 

(x, y) is the decryption key for (Q, R) and that indeed we do have a non-shuffle. 

We will change the way we construct the common reference string for the NIZK 

argument. Instead of generating a — (adding, {&}, {li}) as in the scheme, we return 
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Cr ~ (^binding, {9i}, {li}) Where (^binding, ^extraction) <~ Kbinding(P, <&, G T , e, P ) . B y 

the Decisional Linear Assumption, perfect binding and perfect hiding common refer

ence strings for the GS proofs are computationally indistinguishable, so the adversary's 

success probability only changes negligibly. 

The commitment with trivial randomness is now a perfectly binding commitment 

to the variable 4> = 1. The GS proof is a perfect proof of knowledge of variables 

cu, cv, c'u, dv,du, dv, dw, d'u, d'v, d'w, {a*}, {bi} satisfying the equations, which can be ex

tracted using êxtraction- Since (f) — 1, the equations demonstrate that du = dv — dw = 

d'u = d'v = d'w = 0. The elements {a;}, {bi} satisfy a Permutation Pairing problem 

and the hardness of this problem tells us that with overwhelming probability they are 

a permutation of {(#;, 7,)}. Lemma 1 now gives us that there is negligible probability 

of cu, cv, du, 4 , {a;}, {bi} satisfying the equations and at the same time the input and 

output ciphertexts not being a shuffle. • 

Size of the NIZK argument. To commit to <f> = 1 we can use trivial randomness, 

so the commitment to 4> does not have to be included in the proof - the verifier can 

compute it himself. There are 2n + 10 variables in G and it takes 3 group elements for 

each commitment, so the commitments contribute a total of 6n + 30 group elements 

towards the proof size. 

The first 6 equalities cost 9 group elements each for a total of 54 group elements. 

The next two multi-exponentiation equations cost 9 group elements each for a total of 

18 group elements. We then have n pairing product equations of the form e(aj, aj) = 

e(P, bi) which cost a total of 9n group elements. Finally, we have 6 pairing product 

equations, where one side of the pairings is publicly known and one side is committed. 

They each cost 3 group elements for a total of 18 group elements. 

The total size of the proof is 15n + 120 group elements. The size of the common 
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reference string is 2n + 8 group elements.2 

We remark that the cost of shuffling multiple sets of ciphertexts with the same 

permutation may be amortized to a constant number of group elements. The first set 

of ciphertexts costs 15n + 120 group elements. But we only need to commit to aiy b{ 

and prove e(ai,ai) = e(P, bt) once. Regardless of n, the subsequent shuffles under the 

same permutation only cost 120 group elements each. 

4.4 Remark on Shuffling BGN Ciphertexts 

Another homomorphic cryptosystem over bilinear groups was introduced by Boneh, 

Goh and Nissim [BGN05]. This cryptosystem is based on the Subgroup Decision As

sumption over composite order bilinear groups. The ciphertexts consist of one group 

element each, so with n input ciphertexts and n outputs ciphertexts, the shuffle state

ment contains In group elements and another 0(1) group elements to describe the 

public key. The techniques we have presented in this chapter can also be used to 

shuffle BGN ciphertexts. Assuming the Subgroup Decision Assumption holds and 

assuming suitable variants of the Permutation Pairing and the Simultaneous Pairing 

Assumptions hold, we can make an NIZK argument for correctness of a shuffle con

sisting of 3n + 0(1) group elements. Since the Subgroup Decision Assumption only 

holds when factoring the group order is hard, the group elements in this scheme are 

quite large. 

While this scheme may have applications, we note that there is one subtle issue 

that one must be careful about. The GS proofs can be instantiated with bilinear groups 

of composite order where the Subgroup Decision Problem is hard, but they are only 
2 One could wish for a common reference string that has only a constant number of group elements, 

but currently even all known 3-move zero-knowledge arguments have common reference strings of size 

74 



www.manaraa.com

secure if the factorization of the composite group is unknown. The decryption key 

for the cryptosystem is the factorization of the group order. The 7£co-soundness of the 

scheme therefore only holds as long as the adversary does not know the decryption 

key for the cryptosystem. The NIZK argument is therefore not 7£co-sound as defined 

in this chapter, albeit it will satisfy a suitably weakened 7£co-soundness definition. 

4.5 Conclusions and Open Problems 

In this chapter, we presented an efficient non-interactive pairing-based verifiable shuf

fle. This new scheme relied on two new assumptions — the Permutation Pairing As

sumption and the Simultaneous Pairing Assumption — and made use of GS proofs. 

We gave a heuristic argument for the validity of these assumptions by showing that 

they hold in the generic group model. 

Intuitively, our assumptions regard finding linear relations "in the exponent", which 

are different in essence to multi-exponent assumptions such as the q-BDHE assump

tion (introduced by Boneh, Boyen, Goh [BBG05]). Discovering a reduction between 

the assumptions or remodeling the scheme to work under different assumptions remain 

an interesting open problem. 

Subsequent to the results in this chapter, Groth and Ishai [GI08] proposed an inter

active sub-linear zero knowledge argument for the correctness of a shuffle. Although 

our scheme can be amortized to perform multiple shuffles under the same permutation 

with an 0(1) sized proof, the first shuffle proof is more costly than existing interactive 

shuffle proofs. It is an open problem is to improve the efficiency of non-interactive 

shuffles to be competitive with its interactive counterparts. 
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CHAPTER 5 

Accountable Authority Identity-Based Encryption 

We briefly describe the organization of this chapter (see the introductory discussion in 

Chapter 1, Section 1.3). 

First, in Section 5.1, we review background information related to our construc

tions. In Section 5.2, we formally define the model for an accountable authority 

identity-based encryption scheme. In Section 5.3.1, we discuss the requirements for 

the building blocks used in our general construction, which we present in Section 5.3.2. 

We then prove the security of our general construction in Section 5.4. In Section 5.5, 

we give an efficient realization of an A-IBE scheme as a concrete example of our gen

eral construction. Finally, in Section 5.6, we conclude by addressing some important 

open problems for future work. 

5.1 Background 

In this section, we review some of the building blocks which we will use to construct 

A-IBE schemes. We begin by reminding the reader of the three schemes most rele

vant to our generic construction: identity-based encryption, fully simulatable oblivi

ous transfer, and (key-policy) attribute-based encryption. We then review background 

information that will be used in our concrete constructions. 
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5.1.1 Identity-Based Encryption 

We review the definitions of an identity-based encryption scheme as stated in [BF01, 

BF03]. An identity-based encryption scheme TBS consists of four poly-time algo

rithms: Setup, KeyGen, Encrypt, Decrypt. 

Setup The setup algorithm takes in a security parameter A and outputs the public 

parameters PK and a master secret key MK. 

KeyGen The user key generation algorithm takes as input PK, MK and an identity ID 

and returns the private key d\o corresponding to ID. 

Encrypt The encryption algorithm takes as input PK, ID and a message M and out

puts a ciphertext C. 

Decrypt The decryption algorithm takes as input PK, C, d\u and outputs a message M 

or a special symbol _L indicating failure. 

The correctness property of an IBE scheme requires that d\u should properly de

crypt messages encrypted for ID with overwhelming (or perfect) probability. We also 

define the following IND-ID-CPA game for an IBE scheme: 

Setup The challenger runs the Setup algorithm of IBE and gives the public parameters 

PK to the adversary. 

Phase 1 The adversary queries several adaptively chosen identities ID 1 , . . . , ID9 and 

the challenger runs the key generation algorithm which returns the decryption 

keys d | D i , . . . , d\Qi. 

Challenge The adversary submits two equal length messages M0 and Mi and an iden

tity ID* not equal to any of the identities' queries in Phase 1. The challenger flips 
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a random coin b and encrypts Mb with ID. The ciphertext C is passed on to the 

adversary. 

Phase 2 This is identical to Phase 1 except that the adversary is not allowed to ask for 

a decryption key for ID*. 

Guess The adversary outputs a guess b' of b. 

We say a poly-time adversary A succeeds in the IND-ID-CPA game if it correctly 

guessed b' = b, and we define the advantage of the adversary as Adv^£(\) = \Pr[b = 

b1] — 11. The probability is taken over the random bits used by the challenger and 

the adversary. Finally, we say an IBE scheme IBS is IND-ID-CPA secure if for all 

poly-time adversaries A, the function Adv^e{\) is negligible in A. 

5.1.2 Fully Simulatable k-out-of-n Oblivious Transfer 

Informally speaking, a k-out-of-n oblivious transfer protocol (see [EGL85]) allows a 

receiver to choose and receive exactly k of the n strings from the sender, such that 

the remaining strings are hidden from the receiver and the choice of the receiver is 

hidden from the sender. We require the oblivious transfer protocol to be fully sim

ulatable (i.e. satisfy the standard Ideal/Real world definition of security, see Canetti 

[CanOO] for more details). Various efficient constructions of k-out-of-n oblivious trans

fer are known based on specific assumptions such as DBDH and DDH [Lin08, GH07, 

CNS07]. 

5.1.3 Attribute-Based Encryption 

The notion of key-policy attribute-based encryption (KP-ABE), which was introduced 

by Sahai and Waters [SW05], considered a user having a set of attributes (J) associ-
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ated to him or her. Similarly, when encrypting, the ciphertext also has a set of attributes 

{J) associated to it. At a high level view, this scheme allowed a PKG to distribute user 

keys with a policy that a user can only decrypt when their set of attributes "properly 

matched" the set of attributes in the ciphertext. The original Sahai-Waters work gave 

constructions for threshold policies (i.e. \T C\ J\ > r for some threshold r), and this 

was further generalized by Goyal et al. [GPS06] for more advanced policies including 

those representable by trees of threshold functions. Another useful development is the 

Ostrovsky-Sahai-Waters non-monotonic ABE scheme which allows the access struc

tures defining the policies to be non-monotonic. Our constructions are partially based 

off of these schemes; we will also have sets associated to the user and the ciphertext, 

and it will be convenient to keep the notion of "attributes" in mind. We refer the reader 

to [GPS06] for the details of the construction of an attribute-based encryption scheme. 

Here, we review the basic definitions of such a scheme: 

An attribute-based encryption scheme ABE consists of four poly-time algorithms: 

Setup, KeyGen, Encrypt, Decrypt. 

Setup The setup algorithm takes in a security parameter (A) and outputs the public 

parameters PK and a master secret key MK. 

KeyGen The user key generation algorithm takes as input PK, MK and a policy (e.g. 

an access structure) A and returns the corresponding decryption key dA. 

Encrypt The encryption algorithm takes as input PK, a set of attributes 7 and a mes

sage M and outputs a ciphertext C. 

Decrypt The decryption algorithm takes as input PK, C, dA and outputs a message M 

or a special symbol _L indicating failure. 

The correctness property of an ABE scheme requires that dk should properly de

crypt messages encrypted with satisfying attributes 7 e A with overwhelming (or 
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perfect) probability. We also define the following Selective-Set security game for an 

ABE scheme: 

Init The adversary declares a set of attributes 7*. 

Setup The challenger runs the Setup algorithm of IBE and gives the public parameters 

PK to the adversary. 

Phase 1 The adversary queries several adaptively chosen policies A i , . . . , Ag and the 

challenger generates keys for these policies and returns them to the adversary. 

The declared set of attributes 7* should not satisfy any of these policies. 

Challenge The adversary submits two equal length messages M0 and Mx. The chal

lenger flips a random coin b and encrypts Mb with 7*. The ciphertext C is passed 

on to the adversary. 

Phase 2 This is identical to Phase 1. 

Guess The adversary outputs a guess b' of b. 

We say a poly-time adversary A succeeds in the Selective-Set game if it correctly 

guessed b' = b, and we define the advantage of the adversary as Adv^B£(A) = \Pr[b — 

b'] — 11. The probability is taken over the random bits used by the challenger and the 

adversary. Finally, we say an ABE scheme ABE is secure in the Selective-Set model 

if for all poly-time adversaries A, the function Adv^£{\) is negligible in A. 

5.2 Definitions and the Model 

An Accountable Authority Identity-Based Encryption scheme AXBE consists of five 

components: Setup, KeyGen, Encrypt, Decrypt, Trace. These definitions are pri-
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marily adapted from [Goy07] with a critical enhancement to account for fully black-

box tracing. 

Setup: There is a randomized algorithm Setup (A) that takes as input: the security 

parameter, A, and outputs the public parameters PK and a master key MK. 

Key Generation Protocol: There is an interactive protocol KeyGen between the pub

lic parameter generator PKG and the user U. The common inputs to PKG and U are: 

the public parameters PK and the identity ID (of U) for which the decryption key has 

to be generated. The private input to PKG is the master key MK. Additionally, PKG 

and U may use a sequence of random coin tosses as private inputs. At the end of the 

protocol, U receives a decryption key d\o as its private output. At any time, either party 

may abort. 

Encryption: There is a randomized algorithm Encrypt(M, ID, PK) that takes as input: 

a message M, an identity ID, and the public parameters PK. It outputs the ciphertext 

C. 

Decryption: There is an algorithm Decrypt(C, ID, d\D) that takes as input: the cipher-

text C that was encrypted under the identity ID, the decryption key d\o for ID and the 

public parameters PK. It outputs a message M or _L. 

Trace: There is a randomized algorithm TraceD(ID, d\o, e) that takes as input: an iden

tity ID, a well-formed decryption key d\o, a parameter e (which must be polynomially 

related to A), and has black-box access to a decoder box D. It runs in time polynomial 

in A and 1/e and outputs PKG, User, or Fail. 

Loosely speaking, the idea behind the tracing algorithm is to allow an honest user 

to present her decryption key along with a captured decoder box (which decrypts her 

messages) to a judge to implicate the PKG of wrongdoing. At the same time, the trac

ing algorithm should also prevent a dishonest user from being able to falsely implicate 

the PKG of having created the decoder box. 
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To define security for an accountable authority identity-based encryption system, 

we first define the three following games. 

The IND-ID-CPA game. The IND-ID-CPA game for A-IBE is very similar to the 

IND-ID-CPA game for standard IBE [BF01, BF03]. 

Setup The challenger runs the Setup algorithm of A-IBE and gives the public param

eters PK to the adversary. 

Phase 1 The adversary runs the Key Generation protocol with the challenger for sev

eral distinct adaptively chosen identities ID1 , . . . , ID9 and gets the decryption 

keysrf,Di,... ,d\Dq. 

Challenge The adversary submits two equal length messages m0 and mi and an iden

tity ID not equal to any of the identities' queries in Phase 1. The challenger flips 

a random coin b and encrypts mh with ID. The ciphertext C is passed on to the 

adversary. 

Phase 2 This is identical to Phase 1 except that the adversary is not allowed to ask for 

a decryption key for ID. 

Guess The adversary outputs a guess b' of b. 

The advantage of an adversary A in this game is defined as | Pr [b1 = b] — \ \. 

We note that the above game can be extended to handle chosen-ciphertext attacks in 

the natural way by allowing for decryption queries in Phase 1 and Phase 2. Naturally, 

we call such an extension the IND-ID-CCA game. 

We now define two games which should model the usefulness of the tracing algo

rithm: any decoder box D should trace back to the person who created it. 

The DishonestPKG game. The intuition behind this game is that an adversarial 

PKG attempts to create a decoder box which will frame the user. Both the adver-

82 



www.manaraa.com

sary and challenger are given the security parameter A as input. A second parameter 

e = AAx is also given as input. The DishonestPKG game for A-IBE is defined as 

follows. 

Setup The adversary (acting as an malicious PKG) generates and passes the public 

parameters PK and an identity ID on to the challenger. The challenger checks 

that PK and ID are well-formed and aborts if the check fails. 

Key Generation The challenger and the adversary then engage in the key generation 

protocol to generate a decryption key for the identity ID. If neither party aborts, 

then the challenger gets the decryption key d\o as output. 

Decryption Queries The adversary adaptively queries ciphertexts C\,..., Cq to the 

challenger and the challenger replies with the decrypted values. 

Create Decoder Box The adversary outputs a decoder box D. 

Let SF denote the event that the adversary wins this game, which happens if the 

following two conditions hold: 

1. The decoder box D is e-useful for ID, i.e. Pr[D(Encrypt(M, ID, PK)) = M] > 

e. 

2. The tracing algorithm fails to implicate the PKG, i.e. TraceD(ID,d|D,e) = User. 

The advantage of an adversary A in this game is defined as PrfS'.P] where the proba

bility is taken over the random coins of Trace. 

We note that unlike in Goyal [Goy07], the above game includes a decryption 

queries phase where the adversary adaptively queries the challenger with a sequence 

of ciphertexts. This phase could potentially help the adversary deduce information 
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about the decryption key of d\o if it is able to present a maliciously formed ciphertext 

and get the challenger try to decrypt it. 

The Selective-ID DishonestUser game. The intuition behind this game is that some 

colluding set of users I Di , . . . , I Dq attempt to create a decoder box which will frame the 

PKG. Both the adversary and challenger are given the security parameter A as input. A 

second parameter e = J,x^ is also given as input. The Selective-ID DishonestUser 

game for A-IBE is defined as follows. 

Select ID The adversary announces an ID* to the challenger. 

Setup The challenger runs the Setup algorithm of A-IBE and sends the public param

eters PK to the adversary. 

Key Generation Queries The adversary runs the Key Generation protocol with the 

challenger for several distinct adaptively chosen identities \D1,... ,\Dq and gets 

the decryption keys d^, • • •, d\oq. 

Create Decoder Box The adversary outputs a decryption key d\D* and a decoder box 

D for the identity ID* announced in the Select ID phase. 

Let DF denote the event that the adversary wins this game, which happens if the 

following two conditions hold: 

1. The decoder box D is e-useful for ID, i.e. Pr[D(Encrypt(M, ID, PK)) = M] > 

e. 

2. The tracing algorithm incorrectly implicates the PKG, i.e. TraceD(ID, d\Q, e) = 

PKG. 

The advantage of an adversary A in this game is defined as Pv[DF] where the proba

bility is taken over the random coins of Trace. 
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We note that one can also define a full DishonestUser game where the adversary 

does not have to declare ID* in advance. Our construction is only proven secure with 

the Selective-ID DishonestUser game, and this weakening can be seen as similar to 

weakening of the IND-ID-CPA game by some previously published papers [CHK03, 

BB04a, SW05, GPS06]. 

Definition 1. An Accountable Authority Identity-Based encryption scheme is 

(Selective-ID) secure if for any polynomial time adversary A and any parameter e = 

1
1

(A), A has at most a negligible advantage (in A) in the IND-ID-CPA game, the 

DishonestPKG game and the (Selective-ID) DishonestUser game. 

5.3 Generic construction of A-IBE 

In this section, we describe a general construction of an A-IBE scheme. This con

struction compiles any IBE scheme into an A-IBE scheme by using (in a black-box 

manner) oblivious transfer and attribute-based encryption. The basic idea is to use the 

attribute-based encryption to ascribe a set of "dummy attributes" (cf. [Goy07]) to each 

user key and ciphertext. The dummy attributes of the user are shielded from the PKG 

by using oblivious transfer. The choice of these attributes determine which ciphertexts 

can be decrypted. Intuitively, there is an information gap between the PKG, which can 

decrypt everything, and the user, who can only decrypt based on his dummy attributes. 

Our construction uses a specific combinatorial structure wherein this information gap 

can be efficiently exploited to perform black-box tracing. 

To give some more intuition, we begin by demonstrating a combinatorial example, 

which will be at the heart of our construction. Consider the following setup: Let 

m, n > 0 be positive integers and Si,..., Sm be sets of size n. Fix subsets T{ C Si 

of size k each. For the sake of this example, we take k = ^f. If we uniformly choose 
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random size k subsets Ui C Si, the expected size of |Tj fl Ui\ is ~. By applying the 

Chernoff bound, the probability, for a fixed i, that |Tj fl C/i| < | f is exponentially small 

in n. Asymptotically, if m and n are polynomially related, then by the union bound, 

with all but an exponentially small probability every Ui will intersect % in more than 

| | elements. Note, however, that there are still exponentially many size k subsets 

which do not intersect any Ti in more than | | elements. 

In the context of the example above, one can imagine associating the Tj sets to a 

user. When someone wants to encrypt a message, he or she randomly generates the Ui 

sets (without knowledge of the T; sets) and associates those to the ciphertext. If the 

decryption policy states that a ciphertext can be decrypted if and only if every Ti fl Ui 

has more than | | elements, then an overwhelming fraction of valid ciphertexts can 

be properly decrypted. On the other hand, the tracing algorithm will hone in on the 

exponentially many ciphertexts which the user cannot decrypt in order to implicate a 

party. 

As we shall see, the constants used above are not of much importance other than to 

guarantee certain combinatorial properties. Indeed, the intersection threshold and size 

of k can be replaced by any suitable constant fractions of n. 

5.3.1 Discussion on Requirements for Building Blocks 

Given an IBE scheme ZBE, a k-out-of-n oblivious transfer protocol OT, and an KP-

ABE scheme ABE, we will show how to construct an accountable authority IBE 

scheme AIBE only using IBS, OT, ABE as black-boxes. The reader may refer back 

to Section 5.1 for the definitions of these schemes. While we place no restrictions on 

TBS and OT, we require certain properties to hold true for the key-policy attribute-

based encryption scheme ABE. 

The most obvious property that ABE should satisfy is the ability to capture the 
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scenario described above. Specifically, if identities are represented by ^-bit strings 

and k, n, m are parameters (to be defined later) which are polynomially related to the 

security parameter A, we require the following: 

• ABE can support 2£ + n • m distinct attributes. 

• The encryption algorithm of ABE can support I + k • m of these attributes as 

input. 

• Given I + n • m attributes written asui,...,U£ and n-element sets Tj for 1 < 

j < m, the key generation algorithm of ABS can support user key policies of 

the form "The ciphertext contains all Ui and at least r elements from each T". 

Any sufficiently expressive ABE scheme should easily satisfy the above require

ments. However, we require two additional requirements for ABE to satisfy. Although 

these two specific requirements do not necessarily apply to general ABE schemes, we 

emphasize that the concrete ABE schemes used in this chapter trivially satisfy these 

requirements. 

Key Components. The first requirement is that the user key can be derived from a 

set of "key components". In particular, threshold policies of the form "The ciphertext 

contains all Ui and at least r elements from each Tf (as above) must be representable 

as a collection of key components: (at least) one corresponding to "The ciphertext 

contains all u" and one component corresponding to each attribute in Tj for all j . Fur

thermore, given a user key for the policy above, a new user key for the more restrictive 

policy "The ciphertext contains all m and at least r elements from each X" for any 

Xj C Tj can be derived by selecting the appropriate subset of key components. The 

distribution of these derived user keys should also be identical to the distribution of 

keys which are generated directly by running KeyGen with the restrictive policy. 
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We discuss the reasoning behind this requirement. The combinatorial trick which 

lies in the heart of our construction can be described as: For each 7), the user chooses 

a k-element subset 2} oblivious to the PKG. This should correspond to the restricted 

threshold policy of the form "The ciphertext contains at least r elements from J / ' . 

The PKG cannot directly generate a private key in ABE using this policy, as it should 

never learn what the 2} are. One can imagine getting around this by using secure 2-

party computation, but instead we use this requirement because it leads to an efficient 

realization when combined with OT. 

Indeed, in our protocol definition, we will have the PKG generate a private key 

for the ABE scheme under a threshold policy for the entire set 7}: "The ciphertext 

contains at least r elements from T". If the decryption key decomposes in a natural 

way as required above, then we can use our OT protocol to let the user select the key 

components, thus giving him the desired key. We once again point out that the concrete 

ABE schemes used in this chapter trivially satisfy this requirement. 

Sanity Check. We also require a notion of a "sanity check" for decryption keys and 

ciphertexts. The idea of using a formalized sanity check is also discussed in Au et al. 

[AHL08]. The reasoning for this requirement stems from the possibility that the PKG 

is now dishonest as well. Indeed, no formal definition of an ABE scheme prevents 

the scenario in which a dishonest PKG tricks an honest user into accepting a "bad" 

decryption key. For technical reasons in our proofs1, we require there exists two ef

ficiently computable predicates CiphertextSanityCheck and KeySanityCheck to be 

associated with the ABE scheme ABE. Given the public parameters and a ciphertext 

(resp. user key), the predicate indicates whether or not that ciphertext (resp. user key) 

is "sane". These predicates should satisfy the properties: 

1Loosely, we use this to argue that all sane keys behave identically from the point of view of a 
polynomially bounded adversary. 
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Correctness Honest executions of the algorithms in ABS always result in sane ci-

phertexts and user keys, i.e. 

Pr[CiphertextSanityCheck(C,PK) = 1; 

(PK,MK) *- Setup(A),C <- Encrypt(PK, 7, M)] = 1 

and 

Pr[KeySanityCheck(dA,PK) = l; 

(PK,MK) +- Setup(A),dA <- KeyGen(PK,MK,A)] = 1. 

Soundness If d, d! are sane keys, both of which contain policies that can decrypt a 

sane ciphertext C, then they must decrypt to the same message. 

We mention that [AHL08] defines the notion of a sanity check game, which is 

similar to the soundness property above. In their weaker definition, it should only be 

infeasible for a polynomially bounded adversary to come up with two sane decryption 

keys that decrypt a ciphertext C in two different ways. As we shall see, the concrete 

ABE schemes used in this chapter all admit sanity checks which satisfy our stronger 

definition. 

5.3.2 The Construction 

Let A represent a global security parameter throughout this construction. 

In our construction, each user U is identified by her identity string ID. These are 

represented by ^-bit strings where t is polynomial in A. Let XBE — (IBE-Setup, 

IBE-KeyGen, IBE-Encrypt, IBE-Decrypt) be an IBE scheme, OT be a fc-out-of-ra 

oblivious transfer protocol, and ABE = (ABE-Setup, ABE-KeyGen, 

ABE-Encrypt, ABE-Decrypt) be an ABE scheme satisfying the requirements de

scribed in Section 5.3.1. 
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Let n and m be chosen as "deterrence" parameters: looking ahead, our proofs 

will show that a malicious PKG can only succeed with probability negligible in n. 

For the sake of our proofs, we set n to be equal to the global security parameter 

A and m be super-logarithmic in n, e.g. m = log2(n). We shall denote the sets 

{ 1 , . . . , £}, {1,..., n}, { 1 , . . . , m} by [£], [n], [m], respectively, and the i-th bit of the 

identity ID with ID;. We fix a number of dummy attributes k that is a constant fraction 

of n, and a decryption threshold r as explained above (in the Appendix, we give an 

example using explicit values). 

We also distinguish 21 attributes and designate them as the "user attributes" wij0, 

^i,i, «2,o, U2,i,..., uito, ugti. The idea behind these user attributes is that if a user has 

identity ID then for i e [£], the attribute u^ will be associated to the user. We also 

designate n • m dummy attributes titj with i G [n],j £ [m]. We define Tj to be the 

set {Uj\i £ [n]}. Throughout our construction, we will use Ij, which consists of k 

elements from 1 to n, to denote an indexing set of Tj. We also make the natural identifi

cation of Tj as a subset of Tj when convenient. Then J will denote the collection of all 

m of these indexing sets: J = {Zj}j£[m] • Finally, if J and J are two such collections, 

we define a relation 7£(J, J) which evaluates to 1 if for all j e [m], \Tj D Jj\ > r. 

The key to our construction is that k, n, and m have been chosen so that for a fixed 

J , Pr[R(T, J = 0] is negligible over a uniform choice of J. Our main construction 

follows. 

Setup. Run the setup algorithms of IBS and ABE to obtain (PKIBE,MKIBE) •«— 

IBE-Setup and (?KABE,MKABE) <- ABE-Setup. Then (in the notation above) the 

public parameters are PK = (PKIBE, P^ABE, {ui,j}, {U,j}) a nd the master secret key 

isMK = (MKIBE,MKABE). 

Key Generation Protocol. The high level idea of our key generation protocol is to 

allow the user to obliviously choose which dummy attributes he wants (using a k-
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out-of-n oblivious transfer) on each "repetition". These repetitions are performed in 

parallel and will be viewed as individual components of our key. We want a policy 

that he can only decrypt when the ciphertext contains r of these attributes (for each 

component). Additional care needs to be taken to ensure the simulatability of this 

protocol (which is crucial to our security proofs) while still keeping it as efficient as 

possible. The interactive key generation protocol between PKG and a user U (with the 

identity ID) proceeds as follows. 

1. U aborts if the published attributes {uitj} and {Uj} in the public key are not all 

different. 

2. PKG runs IBE-KeyGen with ID and MK /BE to obtain a decryption key dIBE-

This key is sent to U. 

3. PKG sets Ui = u^ for all i G [£] and computes a decryption key by running 

ABE-KeyGen with the policy "The ciphertext contains all ui and at least r ele

ments from each T". PKG decomposes the decryption key into the components 

(d0, R j h e K j e n ) and stores them. 

4. PKG chooses random permutations 7ri,... ,xTO G Sn where Sn is the set of 

permutations on n elements. Looking ahead, this step will help the simulator 

(in the proof of security) enforce a particular choice of the dummy attributes on 

him. We denote ir = ( x j , . . . , 7rm). 

5. PKG and U then engage in m executions of a A;-out-of-n oblivious transfer pro

tocol where PKG acts as the sender and U acts as the receiver. In the j-th 

execution, the private input of PKG are the key components {dn-(i),j}2=i a nd the 

private input of U is a set Uj of k randomly selected indices (from 1 to n). The 

private output of U are the key components {d^.^jj^Uj-
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6. PKG sends U the permutation list ir and d0. 

7. Finally, U sets Xj = TTJ(UJ) and dABE = (do,{(2,-,{dij}iei,-)}i€H) which 

is a decryption key for the policy "The ciphertext contains all ut and at least 

r elements from each 1" and checks that KeySanityCheck(PK, dABE) = 1 

for that policy. U aborts if the check fails. Finally, U sets the decryption key 

d\D = (dlBE,d,ABE)-

Encryption To encrypt a message M under an identity ID, choose a J7" uniformly at 

random. Namely, choose sets Jj C [n] of size k for each j e [m]. Let 7 be the set of 

attributes {Mi.iDi}^] u {^i,j}i€jj,j€[m\- Compute the ciphertext C as follows. 

Select a nonce R and run IBE-Encrypt with VYLJBE for identity ID, and message 

R to obtain the ciphertext GIBE- Run ABE-Encrypt with PKABE and attributes 7 for 

the message i? © M to obtain the ciphertext CABE-

Output the ciphertext C = (CIBE, CABE)-

Decryption To decrypt the ciphertext C = (CIBE, CABE) using the decryption key 

dm = (dIBE, dABE), we first check that CiphertextSanityCheck(C,
j4B£;) = 1. If the 

check fails, output _L. Otherwise, let MJBE and MABE be the respective messages 

recovered by decrypting each component. Output message M = MJBE © MABE-

Trace This algorithm takes an identity ID, a well-formed decryption key d\Q (with 

dummy attributes T) and a decoder box D which is e-useful. Our tracing algorithm 

will run in time polynomial in A and \. The tracing algorithm will repeat the following 

experiment r\ = ^f^- times: 

1. Choose a random message M and random J subject to the constraint that 

K(X,J) = 0. 

2. Encrypt M using the attributes J to obtain a ciphertext C. 
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3. Attempt to decrypt C using the decoder box. 

If D ever correctly decrypted a ciphertext, then the algorithm implicates the PKG 

by returning PKG, otherwise it returns User. In the next section, we show that the 

above simple tracing mechanism works except with negligible probability even though 

the ciphertexts on which we probe the box are coming from a specific distribution 

(rather than simply being random ciphertexts for the given identity). 

This completes the construction of our generic A-IBE scheme, which we will 

henceforth denote as AXBE-QEM. This construction is summarized as follows: 

Global: \,e,£,k,n,m which are all polynomially related. Identities ID are repre

sented by ^-bit strings. Let XBE = (IBE-Setup, IBE-KeyGen, IBE-Encrypt, 

IBE-Decrypt) be an IBE scheme, OT be a fc-out-of-noblivious transfer proto

col, and ABE = (ABE-Setup, ABE-KeyGen, ABE-Encrypt, ABE-Decrypt) 

be an ABE scheme satisfying the requirements described in Section 5.3.1. 

Setup: Setup (PKIBE, MK7B£;) <- IBE-Setup and ( P K ^ ^ M K ^ ) <-

ABE-Setup. Designate 2£ + n • m special attributes {v>i,j}ie[q,j=o,i, 

The public parameters are PK = (PK /BB, VKABE, {w^}, {titj}) 

and the master secret key is MK = (MKIBE ,MKABE) • 

Key Generation: The user and PKG engage in an interactive protocol. At the end 

of this protocol, the user should have m dummy attribute sets Xj, each of size 

k, which are supposedly oblivious from the PKG. The user ID should have a 

decryption key djBE, which is a private key for ID in ZBE. The user should also 

have CIABE, which is a decryption key in ABE for the policy "The ciphertext 

contains all uit\oi and at least r elements from each X". 

Encryption: To encrypt a message for ID, select a nonce R and encrypt it in XBE 

to obtain CIBE- Choose m dummy attribute sets Jj, each of size k. Set 7 = 
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{«i,iDi, • • •, ^,ID<;} U | J ^ - Encrypt J? © M in *4B£ under the attributes 7 to 

obtain CABE-

Output the ciphertext C = (CIBE, CABE)-

Decryption: We decrypt each half of the ciphertext in the appropriate scheme to ob

tain MIBE, MABE- Output M = MIBE © MABE-

Trace: Given an identity ID, a key cfo and a decoder box D which is e-useful, the idea 

is to repeat the following experiment r\ = ~^ times: Create a ciphertext that 

d\o cannot decrypt (due to the lack of attributes in the ciphertext) and attempt 

to decrypt it with D. If D ever properly decrypts, then output PKG, otherwise 

output User. 

5.4 Security Proofs 

In this section, we show that the generic construction AIBE-QEN given in the pre

vious section is a secure, assuming the security of its building blocks. We first make 

the observation that if the underlying IBE scheme is IND-ID-CPA secure, then so is 

AIBS-gSAf: 

Theorem 5.4.1. The advantage of an adversary in the IND-ID-CPA game is negligible 

for J\XB£-QSM assuming the underlying IBE scheme is IND-ID-CPA secure. 

Given an adversary to break the IND-ID-CPA security of our construction, it is 

straightforward to construct an adversary to break the IND-ID-CPA security of under

lying IBE scheme. For the remainder of the section, we will only focus on the ABE 

portion of the scheme by suppressing the IBE portion in our ciphertext and keys. 
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5.4.1 Dishonest PKG Game 

In this subsection, we show our construction is secure relative to the DishonestPKG 

game. This is formulated as the following theorem. 

Theorem 5.4.2. Assuming that the underlying OT is fully simulatable (secure as per 

the ideal/real world security definition [CanOO]), the advantage of any adversary in 

the DishonestPKG game is negligible for J\JBE-QSN. 

Conceptual Argument: We start off by considering the scheme where the OT in the 

key generation protocol is replaced by an ideal OT functionality. In this hybrid-OT 

world, the dummy attributes selected by the user are information theoretically hidden 

from the PKG's view at the end of the key generation protocol. In our proof, we will 

use the composition theorem of Canetti [CanOO] to transform a real-world adversary 

into this one which operates in the hybrid-OT model. For our conceptual argument, 

we will just consider adversaries which operate in this hybrid-OT world. 

The first phase of the DishonestPKG game is to set up the A-IBE scheme and 

run the key generation protocol with the challenger. The only reply the adversary 

receives in this phase is whether or not it aborted. The adversary can attempt to learn 

information about the dummy attributes by somehow choosing invalid values to test 

whether or not the challenger aborts. One can imagine this malicious behavior as 

setting a dial where, on one end, it almost never aborts, and on the other end, it almost 

always aborts. After the key generation phase, if the challenger did not abort, then the 

adversary learns a little or a lot of information depending on the setting of the dial. 

Of course, for the adversary to succeed in the DishonestPKG game, it cannot cause 

the user to abort too often, and so intuitively it cannot learn too much information 

about the dummy attributes. In our proof, we formalize this relationship between the 

success rate of the adversary and the amount of information learned about the dummy 
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attributes in Lemma 3. 

The next phase in the DishonestPKG game is the decryption queries phase. 

Loosely speaking, because any valid decryption key can decrypt all but a negligible 

fraction of valid ciphertexts, there will almost never be an anomalous query that can't 

be decrypted by the challenger's decryption key. By the soundness of the sanity checks, 

we are guaranteed that the same message is recovered by every key that satisfies the 

policy (one of which will be the valid key that the user actually holds). Thus, the ad

versary can only learn information in the negligible fraction of cases when the policy 

held by the challenger is not satisfied by the dummy attributes in the ciphertext. 

Finally, the adversary outputs a decoder box D. Because the adversary has learned 

almost nothing about the challenger's dummy attributes up to this point, we can imag

ine this box as being created almost independent of these attributes. It remains to show 

that no box can be "blindly" created to implicate a non-negligible fraction of possible 

dummy attribute choices. This will be proven combinatorially in Lemma 6. Thus, the 

adversary is doomed to failure: it must create a decoder box, which can only implicate 

a negligible fraction of all valid decryption keys, but only knows that the challenger's 

decryption key lies in some non-negligible space. 

Proof Organization: We organize our proof as follows. We assume toward a contra

diction that there exists an adversary AQ that wins the DishonestPKG game with non-

negligible success probability. We use the composition theorem of Canetti [CanOO] 

(Lemma 2) to argue that there exists an adversary A that succeeds in the hybrid-OT 

world with non-negligible probability 5 against a challenger Ch. 

Next, we define the event £x to be Pr [Ch finishes KeyGen] > 5/2 where the un

derlying variable is the random tape of the adversary. In terms of the intuition given 

above, this is analogous to saying the adversary did not "set the dial too low". We show 
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in Lemma 3 that Si occurs with probability at least 5/2. We then define the event £2 

to be that the key generation phase was not aborted and focus only on the cases where 

Si A S2 occur. 

After the key generation phase, the challenger holds a key that passes the decryp

tion key sanity check. In Lemma 4, we show that the views of the adversary when 

playing against any challenger whose decryption key can decrypt a valid ciphertext are 

all identical. We define S3 to be the event that the adversary did not ask an "anoma

lous" query, i.e. all queries were either invalid or decryptable by the challenger's key. 

Thus, if S3 occurs, the only information the adversary learns from the conversation is 

that the challenger's decryption key did not come from the negligible fraction of keys 

that cannot decrypt one of the ciphertext queries. We conclude in Lemma 5 that —i£T3 

only occurs with negligible probability when conditioned on Si A S2. 

Conditioned on the events S\ A S2 A £3, we show that the only information the 

adversary has about the challenger's dummy attributes is that it comes from a space 

consisting of at least a PS 5/2 fraction of all possible dummy attributes. Furthermore, 

in Lemma 6, we show that any decoder box D can implicate only negligibly many 

user keys. These two facts combined mean the advantage of the adversary is only 

negligible, a contradiction. Our detailed proof follows. 

Proof of Theorem 5.4.2. Assume toward a contradiction that an adversary AQ has some 

non-negligible probability e of success. We work to eventually contradict a combina

torial lemma (Lemma 6). We begin by describing two experiments Expt0 and Expt^ 

Expt0(*4): In this experiment, the adversary A plays the DishonestPKG game 

against a challenger under the ATBS-QSAf scheme. 

Expt^^l): We create the hybrid scheme ATBS-QSN' where the real OT protocol in 

the key generation is replaced by an ideal OT functionality. In this experiment, 
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the adversary A plays the DishonestPKG game against a challenger under the 

hybrid AXBE-QZN' scheme. 

By the Composition theorem [CanOO], we have the following lemma: 

Lemma 2. [Composition theorem (Canetti [CanOO])] For every adversary AQ that suc

ceeds with probability e in Expt0, there exists an adversary A that succeeds in Exptx 

with probability 5 where \e — 5\ <u\, which is negligible. 

Let SUCC be the event that the adversary A succeeds in this game. Let r^ denote 

the randomness for this adversary and rc denote the randomness for the challenger. 

Recall that the only randomness used by the challenger is during the key generation 

protocol where it selects a set of indices (which correspond to dummy attributes). We 

henceforth identify rc as also being a set of dummy attributes {Tj}. Let £1 be the 

event that the execution of the adversary does not cause an abort in the key generation 

phase with probability at least 5/2. That is to say, £1 holds for the set of r^ on which 

Pr [Ch finishes KeyGen] > 5/2 where the probability is taken over the randomness of 

the challenger. 

Lemma 3. The probability that event Z\ occurs is at least 5/2. 

Proof of Lemma 3: Let p be the probability that event Z\ occurs. Observe that when Z\ 

does not occur, A has at most a 5/2 chance of success due to the fact that the challenger 

will abort in the key generation phase with at least a 1 — 5/2 probability. Thus, by the 

Markov bound, it follows that p > 5/2. • 

We now focus on the executions for which Z\ occurs. The expected success prob

ability of the adversary must still be at least 5 because every execution where £i does 

not occur does not fail in the key generation phase with probability at least 5/2. The 

challenger selects dummy attributes uniformly at random in the key generation proto

col, which implies at least a 5/2 fraction of all dummy attribute sets will lead to the 
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challenger receiving a well-formed decryption key. We now argue that even after the 

decryption query phase, there are still too many possible choices of dummy attributes 

for the adversary's decoder box to succeed against a non-negligible fraction of them. 

Let £2 t>
e m e event that the challenger does not abort in the key generation phase. 

Indeed, the success probability of the adversary can only increase if we condition on 

£2 occurring: any time £2 does not occur, the adversary immediately loses. Now focus 

only on the executions where E\ and £2 occur. Since the challenger did not abort in 

the key generation phase, it now has a well-formed decryption key which passes the 

sanity check. If the challenger has the dummy attribute collection I, then let v2 denote 

the negligible probability that 1Z (J, J) = 0 over a random choice of J. 

Let £3 be the event that all well-formed ciphertexts are properly decrypted (i.e. 

the challenger does not fail on any query to decrypt due to intersection of dummy 

attributes). We now analyze the probability of this event occurring and how it affects 

the view of the adversary. Let u3 be the probability that £3 does not occur given £\l\£2. 

We shall argue that v3 is negligible. 

To prove this, we stratify £3 as the conjunction of the events "Ch did not fail on 

query i" for i = 1 , . . . , q. Let J be the dummy attributes that the challenger holds 

after the key generation phase, and let J% be the attributes in the i-th ciphertext query. 

We define GOOD; to be the event that either the ciphertext in query i is malformed or 

U(X, T) = 1. Define T{ = GOODi A . . . A GOOD*. We state a lemma about the 

view of the adversary. 

Lemma 4. Fix a random tape r^ of the adversary such that £\ occurs (recall that £1 is 

independent of the challenger). Fix a query number 1 < i < q. Let rc, r'c be arbitrary 

elements from the set {rc : £2 A Ti-\ holds}. Before query % is made, the view of the 

adversary in the execution where Ch uses rc as its random tape is identical to the view 

in the execution where Ch uses r'c as its random tape. 
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In particular, the queries made by the adversary in either execution are identical. 

Proof. We prove this by induction on i. When i = 1 (after the key generation phase, 

but before the first query is made), the adversary learns only whether or not the chal

lenger aborted. Up to this point, because we are in the ideal OT world, this is the only 

information the adversary learns. Since both rc and r'c entail the event £2, the view 

of the adversary is identical in both cases: the challenger did not abort and received a 

well-formed key. 

Now assume that the view of the adversary where Ch uses rc is identical to the 

view of the adversary where Ch uses r'c for every query before i. Because the adver

sary has the same view in both cases and we fixed the random tape r^, the i-th query 

is d in either case. Now, if C\ is malformed, the challenger will return _L (regardless 

of any randomness). On the other hand, if d passes the ciphertext sanity check, then 

GOOD, guarantees that the policy is satisfied, and so by the soundness of the sanity 

check, the challenger will reply with the same answer whether rc or r'c was used. • 

Lemma 5. Fix a random tape r^ of the adversary such that S\ occurs. Then 

PrTc [—i£T3\£2] < ^fw- We define the negligible quantity on the right hand side to 

bev3. 

Proof. Let p2 be the probability that event £2 occurs. Because we fixed an execution 

where E\ occurs, we have thatp2 > 6/2. We shall prove inductively that Pr [£2 AJ î] > 

p2 - iv2. 

By Lemma 4, before the first ciphertext query the adversary has no information 

about rc other than £2 occurred. Hence the first ciphertext is independent of any rc 

for which £2 holds. Recall that for any ciphertext, v2 is the negligible fraction of 

user keys that cannot decrypt it. The probability that a uniformly selected rc condi

tioned on £2 will fail on the first ciphertext query is Pr[-iGOODi|£2] < ^ . Thus 
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Pr[GOODi|£2] > 1 — ^ and so there is at least a (1 - ^ ) • p2 = p2 — v2 fraction of 

the random tapes remaining that satisfy £2 A GOODi. 

On the i-th query, the queried ciphertext once again cannot be decrypted by a v2 

fraction of all possible re's. In the worst case, this fraction is disjoint from the ones 

excised by the first i — 1 queries. By Lemma 4, the i-th. query is independent of any 

re for which £2 A T^\ hold. By induction, this accounts for at least a p 2 - (i — l)v2 

fraction of all possible re's. The probability that a uniformly selected rc conditioned 

on £2/\Ti-\ will fail to decrypt the i-th ciphertext query is Pr[-iGOODj|£2 A J-'i-i] < 

_^2_1-)v . Consequently, we calculate that Pr\£2 A Tj\ is at least p2 — iv2. 

Eventually, after q queries, we have Pr[S2 AS3] = Pr[S2 A Fq] is at leastp2 — qv2. 

So Pr[£3\£2] > 1 - ^ > 1 - 2aja, from which the lemma follows. D 

Finally, the adversary must output a decoder box D. We show that any decoder box 

can implicate the user in only a negligible fraction of dummy attribute sets. We denote 

this negligible quantity by v±. Our main lemma, which we prove later, is as follows: 

Lemma 6. Fix the public parameters PK and an identity ID. Let e = *A, and D be 

an e-useful decoder box. If J is a dummy attribute set for the user, we consider the 

following experiment: 

• Select a dummy attribute collection J at random subject to the condition 

11(1, J) = 0. 

• Select a random message M and encrypt M using J as the dummy attributes. 

• The decoder box outputs some M' = D(C). 

Define the event DBox to hold when M' = M. The lemma states that for all but a 

negligible fraction, z/4, of choices for J we have 

Pr[DBox] > -L-
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In particular, the tracing algorithm will (with overwhelming probability) implicate 

the PKG for all but a negligible fraction of choices of dummy attributes. 

Assuming the lemma above, we continue our proof by contradiction. By Lemma 

4, the view of the adversary after events £2 and S3 will be identical for all of the 

remaining (5/2) — v3 fraction of r c ' s . Thus, the adversary creates this box independent 

of rc other than the fact that £2 A £3 hold. Because any of these dummy attribute sets 

remain equally likely, the probability that D succeeds (i.e. the tracing algorithm on 

box D implicates the user) is at most (S/2)-v3 • ^ e s u m r n a r " i z e this contradiction in the 

following equations: 

5 = Pr[SUCC] 

<Pr[SUCC|£iA£2] 

= PrfSUCCISi A £2 A S3]Pr[£3\Si A S2] 

+ Pr[SUCC|£i A S2 A ^£3}Pr[^S3\£1 A S2] 

< V" -1 
- (5/2) - v3 

+1-1/3 

= negl. 

This concludes the proof of Theorem 5.4.2. • 

We now prove the main lemma (Lemma 6): 

Proof of Lemma 6: For the purposes of this proof, we fix an identity ID and ignore 

all portions of the decryption key except for the dummy attributes contained in it: 

I = {Xj }j£[m]. Similarly, we ignore all portions of the ciphertext except which dummy 

attributes are contained in it: J = {Jj}j^[m}- We will refer to Xj (resp. Jf) as the j-th 

component or index of the dummy attributes in a user key (resp. ciphertext). We can 

imagine both X and J as being subsets of the same universe /C which contains all m-
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tuples of ^-element sets. We simply refer to these dummy attribute collections as the 

"user set" and the "ciphertext set". 

Recall that a user can decrypt if and only if each component in the intersection 

between the user set and the ciphertext set contains at least r elements. Let D be a 

decryption box which we fix to be e-useful. For each ciphertext set J we can have 

some probability p j the that the box will decrypt on it2. 

Consider how one randomly samples ciphertexts which cannot be decrypted by the 

user. We may think of choosing ciphertext set that intersects (with the user set) on the 

j-th component Xj by less than r attributes by first choosing a set of j3 = 1 + k — r 

attributes disjoint from Xj, then selecting the remaining k — (5 attributes at random. 

Because these /^-element sets of attributes will be important for us, it is useful to think 

of any arbitrary /3-element subset (of { 1 , . . . , n}) as an atomic object, which we will 

call a bundle. To clarify the description, every set of j3 attributes on the j-th component 

is a j-bundle. Let Bj be the set of all j-bundles. When sampling random ciphertexts 

which cannot be decrypted by the user, the idea is to select a bundle which avoids the 

user set on some component, then select a ciphertext set which contains that bundle. 

For each bundle b G Bj, we can associate to it a set of ciphertexts whose attribute set 

contains it: K?h := {J — (J\,..., Jm)\b C Jj}. Conversely, for each ciphertext J = 

{Ji-, • • •, Jm) we can associate to it a set of j-bundles which it contains: Bj := {b e 

Bj\b C Jj}. We may similarly define sets for users: V3
b := {X = (Z 1 ; . . . ,Xm)\bnXj = 

0} and Aj :— {b e Bj\b n Xj — 0} (users that avoid a bundle, and bundles that avoid 

a user, respectively). 

We first make the observation that by symmetry, the size of the sets K,{ (as well 

as the sets Bj, V^,A^) are independent of b,j, J, and X. Thus, we may speak of the 

value | K{ I even outside the scope of a defined b or j . We define the set of all bundles to 

2Note that since we ignore the message, this is taken over the randomness used in the encryption 
except for the selection of the ciphertext set 
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be B :— UieM ^i an^ w e c a n similarly define the set of all bundles contained in (resp. 

avoided by) a ciphertext (resp. a user) as Bj := {Jje[m] Bj (resp. Aj = \Jje[m] A
J
T). 

By symmetry, selecting a ciphertext set J e K. uniformly at random then selecting 

a bundle it contains b G Bj uniformly at random generates the same distribution on 

pairs (J, b) as selecting a bundle b G B at random (say it is a j-bundle) followed by 

selecting a ciphertext set containing it J G K?h uniformly at random. This can be 

combinatorially written as |/C| • \Bj\ = \B\ • \JC3
b\. 

Definition 2. Let b G -Bj be a (j-)bundle. Define p£ := *—, which is the 
m i 

average probability that a randomly selected ciphertext set containing this bundle is 

decrypted by D. A bundle b G Bj is said to be heavy onjiip'b>-^. We define Cj to 

be the set of bundles which are light (not heavy) on j , and C — \J -£, , Cj. 

We first show a combinatorial lemma. 

Lemma 7 (Marking Lemma). Consider an arbitrary marking on bundles where over | 

the bundles in each Bj for each j — 1 , . . . , m/2 are marked. Then with probability at 

least 1 — (|) a randomly sampled ciphertext set J will have the property that for 

some j , a | fraction of Bj will be marked. 

Proof. Consider any fixed j between 1 and m/2. For a ciphertext set J we define a 

predicate MARKj (J) to hold true if at least a | fraction of Bjj is marked. Let p be 

the probability over a randomly chosen J7" that MARKj (J) = 1. Then we have 

- < P r J ) 6 ^ [Ms marked] 

< Pr[bis maiked\MARKj(J) = 1] • Pr\MARKj(J) = 1] 

+ Pr[b is marked| MARKj (J) = 0] • Pr{MARKj(J) = 0] 

< l . p + I . ( l - p ) 
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Solving forp we obtainp > | . Since j was arbitrary, the probability that no j from 

1 to TO/2 have MARKj is ( | ) m which is negligible in n (since TO was chosen to be 

super-logarithmic in n). • 

Claim 1. Let D be an e-useful decoder box. Either (1) on over half the components, 

more than half the bundles are heavy (on those components) or (2) on at least half the 

components, at least half the bundles are light. We claim that Case (1) implies Lemma 

6, our main lemma. We further claim Case (2) will contradict the usefulness of D. 

Proof. Case (1): One can view the process of sampling a random J subject to 

TZ(X, J) = 0 as: 

1. Selecting a random component j £ [TO] 

2. Selecting a bundle b G Aj in avoiding the user on that component uniformly at 

random 

3. Selecting a ciphertext set J £K{ that contains that bundle uniformly at random 

Then we see that there is a \ probability of selecting a component with over half the 

bundles heavy in the first step, a | probability that the bundle selected in the second 

step is heavy, and finally by the definition of heavy, the ciphertext selected in the third 

step will be decrypted by D with at least a ^ probability. Combined, this gives a 

probability of C/24TO as claimed in Lemma 6. Since the tracing algorithm repeats this 

experiment rj = ^ — times, the PKG will be implicated with all but an exponentially 

small probability. 

Case (2): WLOG we may assume the first TO/2 components have more than half 

the bundles light. By the marking lemma, if we mark the light bundles, we know 

that with all but a negligible probability, a randomly sampled ciphertext will have at 

least I fraction marked (i.e. light) bundles on some component. Define the predicate 
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LIGHTj(J) to be true if there are at least | fraction of light bundles on the j-th 

component. We focus only on the ciphertext sets which has LIGHTj(J) = 1 for 

some j (only negligibly many do not have this property). Consider the space of all 

pairs (J, b) where J is a ciphertext set which contains a light j-bundle b (for some 

j). We will define two probability distributions V\ and "P2 on this space. The first 

distribution is: 

1. Select a random J. 

2. For every component of J, place all light bundles it contains into a set Sj. In 

other words, define Sj := UjeM (&j n £?')• 

3. Select a random bundle b G Sj. 

The second distribution is: 

1. Select a random light bundle b G C 

2. Select a random J e K3
b. 

Observe that if we fix some (J', b'), the probability that V1 selects it is 4 j • T -̂T . 

As mentioned above, at least a third of all the bundles it contains (on some component) 

are light, and because each component contains the same number of bundles, at least 

3^ total bundles it contains will be light. Thus, the probability that V\ selects (J\ b') 

lies between ^ • ^ and ^ • ] ^ [ . 

For the distribution T>2, it will select (J',b') with probability r~, • ~j- By as-

sumption, there are at least half the bundles light on the first half of the components, 

so overall, the light bundles make up over a quarter fraction of all bundles. Thus this 

probability is between ^ • ̂  and ^ • ^ 
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By the earlier observation that \JC\ • \Bj\ = \B\ • \fC3
b\, the probability that a cipher-

text set is selected in 2?i is at most 3ra times as likely as that ciphertext set is selected 

in V2. However, the probability that D decrypts a ciphertext containing a ciphertext 

set sampled from the first distribution is e, while by definition of "light", the probabil

ity that D decrypts a ciphertext containing a ciphertext set sampled from the second 

distribution is at most -f-. Then we have 

e = Y^ ((J,h) is sampled by X>i) • pj 

< 2_\ %m - {{J$) is sampled by 2?2) • Pj 

— ^m ' z ^ ((^'^) ^s s a mpled by V2) • pj 
(J,b) 

< 3m • 
6m 

which is a contradiction. • 

5.4.2 Dishonest User Game 

We now prove AIBS-QEAf is secure relative to the Selective-ID DishonestUser 

game assuming the underlying ABE scheme is Selective-Set secure. To accomplish 

this, we construct a security reduction. 

Theorem 5.4.3. Assuming that the underlying OT is fully simulatable (secure as per 

the ideal/real world security definition [CanOO]) and the underlying ABE scheme is 

Selective-Set secure, the advantage of any adversary in the Selective-ID 

DishonestUser game is negligible for MB8-QSM. 

Conceptual Argument: As before, we focus on the hybrid-OT model where the real 

OT protocol in the key generation protocol is replaced by an ideal functionality. Again, 
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we use the composition theorem of Canetti [CanOO] to convert an adversary in the real 

world into this model. Given an adversary for the Selective-ID DishonestUser game, 

we provide some intuition as to how we construct a simulator to use this adversary to 

assist us in winning the Selective-Set game with the underlying ABE scheme. We first 

discuss the difference in the initial selection the adversary must make in each game. 

In the Selective-ID DishonestUser game, the adversary must first announce the 

identity ID* which it will attack. Note that this implicitly defines a set of I attributes 

corresponding to this identity. Note that the adversary does not have to mention 

which dummy attributes will be used in this attack. To account for this, we select a 

random "target" dummy attributes T = {ij}je[m] which we will eventually "force" 

the adversary to choose. In the Selective-Set game, the ciphertext attributes must 

be announced in advance. In our reduction, after the adversary announces ID* in 

the Selective-ID DishonestUser game, our simulator chooses dummy attributes by 

choosing J = {Jj}j£[m\ at random subject to H(T,J) = 0 (outside the view of 

the adversary). This ensures that when we later force the adversary to receive the 

dummy attributes T in the decryption key d\D*, this key cannot decrypt a ciphertext 

encrypted with the dummy attributes J. Then we define 7 as the set of attributes 

{ui,\ot} u U"Li 3y O u r simulator announces 7 as the selected ciphertext attribute set 

in the Selective-Set game. 

In the next phase of the Selective-ID DishonestUser game, our simulator handles 

the key generation queries by rephrasing these as ABE key queries in Phase 1 of the 

Selective-Set game. In the A-IBE key generation protocol, we also simulate the ideal 

OT functionality. Since the dummy attribute set is determined jointly by the inputs 

of the PKG (our simulator) and the user (the adversary), we can arbitrarily control 

the output if we "rush" the adversary to give its inputs first. Since we can control the 

dummy attributes, we can query for a precise policy rather than one which contains all 
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the dummy attributes (as prescribed in the honest protocol construction). We mention 

that extra caution needs to be taken in the special case where the queried key is for ID*. 

In the proof, we describe how the simulator handles this case by forcing the dummy 

attributes to be exactly the previously selected J . 

It is mostly intuitive that this simulation is indistinguishable from a real execu

tion. After all, the simulator is mostly used to transport queries from the Selective-ID 

DishonestUser game to the Selective-Set game. However, we must argue the tweaks 

used to cover the discrepancies between the two games does not affect the accuracy of 

the simulation. We prove this in Lemma 8. 

At the end of the Selective-ID DishonestUser game, the adversary outputs a de

cryption key d\o* and a decoder box D. Even though in the key generation phase it 

received a decryption key for ID* under the dummy attributes J , it is possible that 

somehow the adversary was able to come up with a decryption key with a different 

dummy attribute set. Let J* = {Tj}j£\m] be the dummy attributes in this decryption 

key. In our proof, we split our analysis into two types of attacks, which can be intu

itively thought of as this key being "close" to T or not. We refer to these two cases as 

Type-1 and Type-11 attacks. Lemmas 9 and 10 show that in each case, the simulator 

has a noticeable chance of decrypting the ciphertext, which will allow us to win the 

Selective-Set game. 

Proof Organization: We describe the organization of our proof. We assume to

ward a contradiction that there exists an adversary AQ that wins the Selective-ID 

DishonestUser game with non-negligible success probability. As before, we use the 

composition theorem of Canetti [CanOO] (Lemma 2) to argue there exists an adversary 

A that succeeds in the hybrid-OT world with non-negligible probability 8. 

We spend the first half of the proof constructing a simulator S that plays the 
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Selective-Set game against a challenger Ch by internally using A as a black-box. S 

behaves by simulating the role of the PKG in the Selective-ID DishonestUser game 

as well the ideal OT functionality to play against A. In Lemma 8, we show that this 

simulation is perfect from ^4's point of view. The success probability of this internal 

A must also be 5. 

Conditioning on A's success, we classify the adversarial strategy of A into two 

cases: Type-1 and Type-11 attacks. In a Type-1 attack, Lemma 9 shows that the sim

ulator has a | - advantage in winning the Selective-Set game. In a Type-11 attack, 

Lemma 10 shows that the simulator has a -^ advantage in winning the Selective-Set 

game. Since the probability of A succeeding is 5, S has a -^ overall advantage in the 

Selective-Set game. 

Proof of Theorem 5.4.3: Assume there is an adversary AQ that wins the 

DishonestUser game with advantage So- As in the previous proof, by Lemma 2 (the 

composition theorem of Canetti [CanOO]), there exists an adversary A that has advan

tage 8 in the ideal world where the OT protocol in the key generation is replaced by an 

ideal functionality. By the same lemma, this new advantage 5 differs from So only by 

a negligible quantity. 

We create a simulator S that uses A to play against a Selective-Set ABE challenger 

Ch. S also simulates the ideal OT functionality which A will interact with during its 

execution. We label the interaction between the parties so it is clear whether we are 

referring to a phase in the DishonestUser game or the Selective-Set game. We assume 

that A, e, k, n, m, r, I are known to all parties and fixed in advance. The algorithm for 

S follows: 

• A-IBE Select ID (A -> S): The adversary A selects an identity ID* as the 

challenge identity. S designates the user attributes {uitj} and dummy attributes 

{ti,j}i£[n],j£{m\- <•> m e n selects m sets of k elements at random, which we denote 
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as X = {Tj}j£{m\. S randomly selects a J subject to the constraint 1Z(I,J) = 0. 

• ABE Init (<S -»• Ch): S sets 7 = H , ID*} U \J™=1 Jj as the challenge set and 

sends this to Ch. 

• ABE Setup (Ch —> S): Ch sets up the ABE scheme and sends S the public 

parameters PKABE-

• A-IBE Setup (S -»• A): S sets PK = (PKABE, {u^}, {titj}) (recall that we are 

suppressing the IBE portion) and sends this to A. 

• A-IBE Key Generation Queries: For the r-th query, A interacts with S to 

generate a decryption key for ID^. First, we describe the strategy for S in the 

case that ID^ ^ ID*. We break this down into the individual steps of the key 

generation protocol. 

1. A does not abort in this step as the attributes are all distinct. 

2. The decryption key for the IBE portion is sent from S to A in this step. 

3. S (simulating the PKG) deviates from the honest protocol this step. It sets 

Ui — u. .-AT), and then it selects sets of random dummy attributes J . It 

constructs the specific policy "The ciphertext contains all m and at least r 

elements from each Z/' . Observe that 7 does not satisfy this policy as it 

does not contain some Ui (due to the fact that ID^ / ID*). B delegates the 

computation of this decryption key to Ch: 

- ABE Phase 1 query (S —>• Ch): S asks Ch for a decryption key 

corresponding to the above policy. 

- ABE Phase 1 reply (Ch -> S): Ch replies with a decryption key 

which we decompose as (d0, {di,j}iex,-,j€[m]). 

4. S waits until the next step to choose the random permutations. 
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5. S and A then engage in m executions of a k-out-oi-n ideal OT functionality 

where S acts as the sender and A acts as the receiver. On the j-th execution, 

because S is also simulating the OT functionality, it can simply wait for the 

indexing set Uj to arrive from A, then S chooses %j to be a permutation 

which takes Uj to Z,-. S then finishes the OT simulation by sending the 

correct output {di,j}iei,-)}jeM to A. This results in A receiving exactly 

the key components that S possesses. 

6. (S —> A): S sends the permutation list x and d0 to A. 

7. A sets the decryption key d = (do, {(Ij, {dij}i€lj)}j€[m]). Finally, A 

performs a key sanity check and succeeds. 

In the special case where ID(r) = ID*, we modify Step 3 to use T ~T. Note that 

by choice, 7 still does not pass the policy "The ciphertext contains all Ui and at 

least r elements from each J / ' by the construction of J and J. Continuing with 

the construction, S now enters the challenge phase of the Selective-Set game. 

• ABE Challenge (S —> Ch —• S): S chooses two equal-length messages M0 and 

Mi uniformly at random and sends them to Ch. The challenger flips a random 

coin b and encrypts Mb with attributes 7. The ciphertext C is sent back to S. 

• ABE Phase 2 (S -*• Ch): S skips this phase. 

• A-IBE Create Decoder Box(.4 —> S): A outputs a decryption key d\D* (with 

dummy attributes J*) and a decoder box D. If the decryption key is invalid, S 

aborts and outputs a random value as the guess. Otherwise, let U* be the uniform 

distribution on dummy attribute collections J such that 1Z(1*, J) = 0, i.e. ones 

which cannot be decrypted by d\D*. Similarly, we define U to be the uniform 

distribution on {J\TZ(X, J) = 0}. If the statistical distance between U* and U 

more than f- then we call this a Type-1, otherwise we call it a Type-11 attack. 
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We simulate the tracing algorithm by having S sample r\ — ~^ ciphertexts 

from U* and attempting to decrypt them with D. If D ever succeeds in correctly 

decrypting one, then we say A has succeeded in the simulation. 

• ABE Guess (S —> Ch): Finally, S attempts to decrypt C with dID* and D. In 

either case, if the decryption is successful and returns Mb* then S outputs the 

guess b*, otherwise it will make a random guess. 

This completes the construction of our simulator S. We define a few events associ

ated to this simulation that will be used later. Let SUCC^ be the event that A succeeds 

in our simulation (and Fail^ that A does not succeed), and let SUCC5 be the event 

that S succeeds in guessing b. Let S\ be the event that A successfully used a Type-1 

attack and similarly define £2 as the event that A used a Type-11 attack. We first make 

a claim about the distribution of J given a view of the adversary, and subsequently 

show in Lemma 8 that A succeeds with the same probability in our simulation as it 

would in a real execution. 

Claim 2. J is independent of *4's view except that 1Z( J , J) = 0. Indeed, it is equally 

likely that any of the J sets (subject to the condition above) was chosen by the simu

lator. 

The claim is true by the observation that S does not make use of any Jj in any of 

the intermediate steps while communicating with A. 

Lemma 8. The distribution of the information A receives in the above protocol is 

identical to the distribution A would have received in a real execution of the Selective-

ID DishonestUser game. In particular, Pr[SUCCA] = S. 

Proof. By observation, this claim holds up to the key query phase. We analyze the 

difference between the simulation and a real execution in this phase on the r-th query. 
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First, we consider the case where IDw ^ \D*. A selects random indices U\,..., Uj 

and uses these as private input to the ideal OT functionality. In a real execution, the 

PKG would have to sample it\,..., -KJ at random. However, the simulator selected 

I at random and "solved" for TV, but this still results in the same distribution. The 

key components that S obtains from Ch will be distributed identically to the ones a 

real execution when restricted to J (by requirement, cf. Section 5.3.1). Hence, the 

distribution of replies received by A in the simulation will be identical to that of a real 

execution. 

In the other case where ID^ = ID*, S sets 1 = 1. Because each identity may 

only be queried on once, this set has not been used before nor will it be used again in 

the simulation. Although this set has been implicitly used to define 7, this was done 

outside the view of A, and thus we are back in the previous case where X was selected 

at random. 

After the key generation phase, the only interaction between A and S is the Create 

Decoder Box phase, but S does not send anything to A in this phase. Therefore, 

the view of A in the simulation is identical to that of the real game, and thus, the 

probability of A succeeding in the simulation is identical to it succeeding in a real 

execution: PrfSLICC^] = S. • 

It remains to show that S has a non-negligible advantage in the Selective-Set game. 

We handle the cases of Type-1 attacks and Type-11 attacks separately. Define Si = 

Pr[£i] for % = 1,2 to be the probability that a Type-I attack was used. By the previous 

lemma, Pr[SUCC^] = 5, and clearly 5i + S2 = Pr[SUCC^] = 5. We state two 

lemmas that calculate the probability that S succeeds under each such event: 

Lemma 9. Conditioned on event S\, S will correctly decrypt the message using d^* 

with probability at least J-. 
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Consequently, S will correctly guess b with probability at least - + —, i.e. 

P r [ S U C C 5 | ^ ] > i + ^ 

Proof. Recall that in a Type-1 attack, we have that the statistical distance between U* 

and U is greater than f-. Then J, which can be viewed as being sampled randomly 

from U, lies outside of the set {J\7Z(1*, J) = 0} with probability greater than ~. 

By definition, this means 1Z(X*, J) = 1, and thus d\o* can successfully decrypt it. 

In such a case, S correctly guesses b. On the other hand if 71(1*, J) = 0 then at 

worst, S makes a random guess, which is correct with probability | . We conclude the 

following: 

Pr[SUCCs\Ei] >l + ~ 
2 877 

• 

Lemma 10. Conditioned on the event £2, S will correctly decrypt the message (using 

s_ 

2 T I6772 • 

D) with probability at least j - . 

Consequently, 5 will correctly guess fr with probability at least \ + ^ 

Let p be the probability that D decrypts a ciphertext sampled from the distribu

tion U*. Recall that our simulated tracing algorithm makes rj attempts to decrypt a C 

chosen randomly from U*. For A to succeed, it must decrypt at least once, and since 

the success probability of A is 8 the union bound and Markov's inequality gives us, 

Pr\p>l]>i 

Recall that in a Type-11 attack, we have that the statistical distance between U* and 

U is at most j - . We view C as being sampled from U, so if p > ~, D will decrypt 

C with probability at least p — j - > j - . Thus overall, with probability at least -^, D 

will decrypt and S will correctly guess b* = b. Otherwise, S correctly guesses b with 

probability (at worst) | . 
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We conclude the following: 

pr[succs\e2]>\ + ^ 

• 

Combining Lemmas 9 and 10 we compute the success probability of S as: 

Pr[SUCC5] = PrlSUCCslS^PriSx] + Pr[SUCCs\S2}Pr[£2} 

+ JPr[SUCC5|FaiU]Pr[FaiU] 

"> A _|_ ^ 1 ^ I <^2^ 
— 2 ~ r 877 " ^ 16?72 

As 5i + 52 = 5, S's advantage is at least —^ • This concludes the proof of Theorem 

5.4.3. • 

5.5 Concrete Construction Based on the DBDH Assumption 

In this section, we give a construction of a secure A-IBE scheme AZB6-1 based on 

the decisional BDH assumption. We instantiate the AIBE-QSM scheme using the 

attribute-based encryption scheme of Goyal et al. [GPS06] which relies on the DBDH 

assumption. We show how this ABE scheme satisfies the requirements stated in Sec

tion 5.3.1. Because the Waters IBE scheme [Wat05] also relies on the decisional BDH 

assumption, we may use it as our underlying IBE scheme. 

For completeness, we show the construction of the compiled protocol below (the 

IBE portion is implicit and suppressed for clarity). 
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5.5.1 The Construction 

We work in a bilinear group (p, G, G T , e, P). We define the Lagrange coefficient Aj,s 

for«' G Z/pZ and some set S C Z/pZ to be 

^w == n H-
j es \ { t } •> 

We represent the identities as strings of length £ (since an identity ID E Z/pZ, £ is 

the number of bits required to represent an element in Z/pZ). Let n, m, k be chosen 

as usual. 

Setup For each i E [£], choose two numbers uifi and uiti uniformly at random from 

Z/pZ such that all 2£ numbers are different. In addition, for each % E [n] and j E [m] 

choose a Uj uniformly at random from Z/pZ. Also choose a number y uniformly at 

random in Z/pZ. 

The published public parameters are: 

PK {{Ui,j=ui,jP):te[£],je{^\}}, 

{(ThJ = UjP) : i E [n],j E [m]},Y = e(P,P) 

The master key is: 

MK = [{UiJ : i E [£],j E {0,1}}, {(titJ) : i E [n],j E [m]},y 

Key Generation Protocol 

1. U aborts if the published values in the public key are not all different. 

2. PKG runs IBE-KeyGen with ID and MK / B E to obtain a decryption key dIBE-

This key is sent to U. 

3. In this step, the PKG generates the ABE key. This is performed as follows: 
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(a) PKG generates m + 1 random numbers yo,...,ym from Z/pZ such that 

y0 + \-ym = V- We will use y0 to tie in the identity and yi,..., ym for 

the dummy attribute sets. 

(b) PKG generates £ random numbers r 1 ; . . . , re from Z/pZ such that ri + 

\-r£ = y0. 

(c) PKG generates m random polynomials (of degree r — 1) qi,... ,qm with 

fc(0) = Vj-

(d) PKG computes the key components di = Tijui^P for all % G [£] and 

sends them to U. It also computes key components ditj = qj(i)/ti}jP for 

all i G [n], j G [m] and stores them. 

4. PKG chooses random permutations TT1: ..., 7tm G Sn. 

5. PKG and U then engage in m executions of a fc-out-of-n oblivious transfer pro

tocol where PKG acts as the sender and U acts as the receiver. In the j-th 

execution, the private input of PKG is the key components {dn (i),j}"=1 and the 

private input of U is a set lj of k randomly selected dummy attributes. The 

private output of U is the key component {7Cj(i), dn.(i)^}i^xr 

6. PKG sends U the permutation list -IT. U checks if he got the right key components 

as per -K (and aborts if the check fails). 

7. U sets d = ({di}i&[e}, {(lj, {rfij}ieJ3)}jeH) a n d m n s a k ey s a n u 7 c h e c k o n d> 

which we will define. U aborts if the check fails. Finally, U sets the decryption 

key d\o = d. 

Key Sanity Check Here, we show how to define an appropriate key sanity check for 

the GPSW ABE scheme. Given a decryption key 

d\D = {{dijiclt], {(lj, {dijjid^jjzlm]) 

118 



www.manaraa.com

for an identity ID, we define a (deterministic) algorithm to check the well-formedness 

of this key. 

1. For each j G [m], let S be the first r elements of Xj. Verify that every point 

x G Xj lies on the polynomial interpolated by the points in S: 

3. Finally, check that 

Y=ne(uhiDi,dt) n^-
i£[£] j€[m] 

If all of the above are verified, then the key sanity check passes, otherwise it fails. 

Encryption To encrypt a message M G GT under an identity ID, choose a random 

value s G Z/pZ and a subset Jj C [n] of size k for each j G [m]. Compute the 

ciphertext C as follows. 

C = ({Jjhelm], c =M-Y°, {(Q = sUitiDi) : i G [£}}, 

{(CiJ = sTij):j(=[m],ieJj}) 

The key generation for ID was set up so that if on each component j G [m] the 

user's dummy attributes (Xj) intersect the ciphertext's dummy attributes {Jj) by more 

than r then the user can decrypt the message. 

Decryption To decrypt the ciphertext 

C ~ \\^i\J€M) c> {Ci}, {Cij}) 

using d\D = ({di}im, {(Xj, {d;,j}iex,-)}jeM)' ^si m n a ciphertext sanity check on C, 

which we will define. 
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If the check fails, output J_. Otherwise, recover the message M by selecting (for 

each j £ [m]) a set Sj C lj D Jj of threshold size r and performing the following 

computations: 

c/uetcudi) n n(e(^'^))Ai^(o) 

= M • e(P, P)sy/ J ] e(suhiDiP, Ti/u^P) 

n I I W V ^ W M ) ^ 
jG[m]»€S3-

= M • e(P, P)sy/e(P, P)syo J J e(P, P)sv^ 

= M • e(P, P)sy/e(P, P)syo JJ e(P, P)syt 

j£[m] 

= M 

The decryption algorithm outputs _L if 7£(J, J) = 0. 

Ciphertext Sanity Check Our ciphertext sanity check is similar to that in [Goy07]. 

Given a ciphertext C = ({Jj}j^[m], c, {Q}, {Citj}) for an identity ID, we define a 

(deterministic) algorithm to check the well-formedness of this ciphertext. Verify that 

e(Ci, f7i,iDi) = e(Ui,\Di,Ci), ie[£], and 

e(Citj, Ult\Dl) = e(Tij, d), j £ [TO], i G Jj 

If all of the above are verified, then the ciphertext sanity check passes, otherwise it 

fails. 

Trace This algorithm takes an identity ID, a well-formed decryption key d\o (with 

dummy attributes J ) and a decoder box D which is e-useful. Our tracing algorithm 
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will run in time polynomial in A and K The tracing algorithm will repeat the following 

experiment rj = ^ ^ times: 

1. Choose a random message M and random J subject to the constraint that 

2. Encrypt M using the attributes J to obtain a ciphertext C. 

3. Attempt to decrypt C using the decoder box. 

If D ever correctly decrypted a ciphertext, then the algorithm implicates the PKG 

by returning PKG, otherwise it returns User. 

5.5.2 Security Proofs 

The security of AIBS-l follows directly from that of the generic construction. If 

we choose a fully simulatable k-out-of-n OT and an IBE which are secure under the 

decisional BDH assumption (e.g. Lindell [Lin08] and Waters [Wat05], respectively), 

we have that: 

Theorem 5.5.1. Under the DBDH assumption, the advantages of any adversary in the 

IND-ID-CPA, DishonestPKG, and Selective-ID DishonestUser games are negligi

ble for AIB8-1. 

It remains to show that the GPSW ABE scheme satisfies the requirements stated in 

Section 5.3.1. By observation, we see that it satisfies the key decomposition require

ment. Also, the key sanity check and ciphertext sanity check are clearly correct. In the 

notation of the construction above, we now show that the sanity checks are sound. 

Let d and d! be distinct keys for an identity ID that have passed the key san

ity check, and let C = ({Jj}jeH,c, {C\}, {Cij}) be a ciphertext that has passed 
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the ciphertext sanity check. Write d = ({di} i e WJ(T^djj} i e I j .)} j G [ m ]) and d! = 

Since d and <f passed the key sanity check and C passed the ciphertext sanity 

check, we have that 

1. For each fixed j , each ditj and d\- lie on unique polynomials q^ and q'j, respec

tively. 

2. If we write Yj = Ui£S <<ki, Tw)A*-s(0), >? = 1 1 * * <*& Tu)**M<», then 

Y=ne(u^Di,dt) n ^-=ne(^iDi,di) n ^ 
i€M J ' G H iG[<| jG[m] 

3. C* = rt/ijDi and ^ J = rThj> w n e r e r = lo9ult{Dl (Ci). 

Now because each djj lies on a unique polynomial, the decryption using d results 

in 

M = c/ J 7 e(d, di) J ] n (e(Chj, ^ ) ) A ^ ( 0 ) 

i€[£] Mm] i£Sj 

= c/1[[e(rUi,iDi,di) I I Il( e( r T«'^))A i 'S 3 ( 0 ) 

=c/(Yi<uillDi,di) n n(e(T^'^))A^'(o))r 

= c/Yr 

regardless of how 5" is chosen. Similarly, because each d\ • lies on a unique polynomial, 
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the decryption using d! results in 

M'=c/n>(cu) n n^^^))^^ 
»€[<! je[m]i£S'. 

= c / n # ^ . * n ii(e(rr«.(jy))^(D) 

=c/(ne(^iDi,<) n ii(e(T«'<i))Ai'sj(o))r 

= c / F r 

regardless of how 5" is chosen. 

Thus M — M', which shows that the sanity checks are sound. 

5.6 Conclusion and Open Problems 

In this chapter, we proposed a model of a secure accountable authority identity-based 

encryption scheme which handles black-box decoders. This model is a critical im

provement over the original Goyal [Goy07] model. We gave a generic construction of 

an A-IBE scheme in this enhanced model from any IBE, OT, and KP-ABE scheme. 

We also gave a concrete construction of an A-IBE scheme under the decisional BDH 

assumption where the security was respect to the IND-ID-CPA, DishonestPKG, and 

Selective-ID DishonestUser games. We also mention a manuscript [GLS] that is in 

preparation which describes achieving perfect completeness for our scheme, as well 

as a slightly different (and more efficient) combinatorial construction using the non

monotonic property of the OSW KP-ABE scheme. 

There are several interesting open problems to be explored. We prove our con

struction to be secure in the Selective-ID DishonestUser game. This is seemingly 

due to the underlying connection to the Goyal et al. [GPS06] scheme which is only 

provably select-set secure. Even if there is some inherent difficulty in proving the full 
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security of attribute-based encryption schemes such as Sahai-Waters [SW05] or Goyal 

et al. [GPS06], there may be other tricks that can be done for our construction. 

Important questions arise when dealing with the users' decryption keys. The se

curity in both Goyal [Goy07] and our construction only hold when a one decryption 

key is generated per user (with an explicit break if more than one is made available). 

This means that if the user loses his key, the user needs to get a new identity ID' to 

request a new key. Can we make a A-IBE scheme that allows a single ID to generate 

polynomially many keys? 

Our tracing algorithm takes as input a user's decryption key. If a user lost the key 

or is deliberately uncooperative in court, then we cannot implicate the PKG or the user. 

One interesting open problem is to consider the possibility of tracing a box using only 

a public tracing key, or with the assistance of a tracing authority. What would be the 

proper additional modifications to the model of accountable authority IBE to account 

for this? 

Finally, we mention the issue of efficiency in our scheme. We view this in terms 

of the added cost of turning an IBE scheme into an A-IBE scheme by secret sharing 

the message as in our construction. Each ciphertext and decryption key will now have 

an additional I + mk group elements and an additional mk elements to represent the 

attributes. In our construction, there was a single global parameter A which governed 

these parameters (of accountability) as well as the security of the scheme. One can 

imagine having a second parameter A' which will determine the accountability rather 

than the security of the scheme which will allow us to adjust the level of accountability 

in the scheme. The creation of an A-IBE scheme with only a logarithmic or constant 

sized decryption key and ciphertext remains as a broad open question. 
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